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CHAPTER I
COUNTING

Lirrie children easily learn to count. Very early in their lives
they notice the existence around them of recogniZable
objects. As soon as they can speak, they learn to say the names
of some of these. Almost at once they notice that someobjects
may be classed together, as being obviously of the/game kind,
In particular they notice the existence of pairs; '0?'0bjects, and
learn to use the word *‘two”. When I speak@ftwo hands and
two feet, the child realizes that the set of gy hands has some-
thing in common with the set of my féet” When I turn on a
light and then another light, the child\says “two lights”. This
is the beginning of counting. M

Soon other numbers, three, foit, five and so on are learnt,
The use of the word “one” probably comes later, the existence
of single objects being at fitst too_obvigus to call for a special
name. “Nought”, the nepation of the’ SHEWHEETF 5§ Bbjects
of a particular class, i§\a comparatively abstract idea, which
only occurs to us when we are used to counting. Some ancient
races had no sym‘{)%l for “nought”, which they did not think
of as the samesgbrt of thing as “one” or *‘two”.

Older children learn the routine of counting up to quite
large numBets. Bevond thirty or forty this must scon cease
to have(ahy particular meaning for them, but the rhythm of
cougt& (twenty-one, twenty-two, twenty-three) makes it
rather like saying very easy poetry. Children sometimes even

,.\t‘:g\unt backwards to amuse themselves.

It soon becomes obvious that the process of counting can
go on a very long way. I once overheard my children dis-
cussing the question, ‘“What is the largest number #’ One of
them thought that it must consist entirely of g’s. The second
thought that it must be possible to get it by using all the words
“hundred”, “thousand”, “million”, and whatever else there
might be, in the most favourable way (the idea of repetition
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8 COUNTING

not being thought of). The third objected that one could neve
eount as far as that, supposing apparently that to make it fai
one ought to be able to count through all the numbers up t
the largest, They all agreed that the subject presented seriov
difficulties, and passed on to other topics.

They did not ask me what the largest number was. In th
they were undoubtedly wise, because I should not have beg
able to tell them. I should have been faced, like any bthe
mathematician, with a serious dilemma. Either there“is
largest number, and when we get to it we must stop;ef we g
on for ever, and the set of numbers is endless, or, as we sa)

It might be said that, as all the numbefs,'which are eve
actually used or thought of individually fofmt a finite set, w
might as well confine our attention tosguth a set, and avoi
the necessity of trying to think aboyt jffinite classes of number
Perhaps it would be possible to db,this, but it would reall
make the practice of mathematies’ more difficult. Not onl
should we be condemned forlgver to the trivialities of finit
anth'mt_etlc, but almost every statement in mathematics woul
be limited p;bga]cg_rbqlgjgp that the numbers invelved mus
not be too ge. Of egurse in our minds there is no barrie
to endless counting\Iowever far we have got, we can alway
count one mo e.'\‘..’

. Practically - mathematicians agree that there is no uppe
limit beyond which counting must cease; that is, they agre
to regqrglﬂué numbers which begin with one, two, three, —
the primal elements of mathematics, as an infinité class, Suc
;ﬂ %glflellf-meflt, or declaration, which is itself incapable of proo!
& e: ch is a necessary starting point for further thinking, |
N\ an axiom. The axiom about the set of numbers goin
¢~ von for ever is called the axiom of infinity, |

What are numbers?

To chi
are j:stchlﬁledretﬂi}l and probably to most other people, numbet

are ju 8 we count with, They are d h
10" or “Hiye A i y words such a
objects, suchv:g .t]\:ehlch call up in our minds a fandiliar set c

set of my hands, or th
on ) ¢ set of fingers o
e hand. The number spoken relates a named set togm:e_t;



COUNTING 9

these familiar sets; that is, it asserts that we could pair off each
object of the named set with one of the objects of the familiar
set. “Two lights” might mean that there is a light on my right
hand and z light on my left hand. But couples are so often
met with that the set of hands may be forgotten, and “two”’
just relates a new couple to all those which we have met |
before.

Generally, if we can pair off the members of one set with
the members of another set, so that none of either set s left
over, then the two sets must have the same number, whatever
that may mean, Number must have a meaning such(that it is
true that I have the same number of fingers ou €éich hand,
and the same number of buttons as buttopbholes on my
waistcoat (with coats the situation does not\seem to be so
simple). N

The question what numbers are hag Beeh much debated by
philosophers, and they do not seem teNjave reached any agree-
ment about it. T'here is nothing\particularly surprising or
distressing about this. It has been said that mathematicians
are happy only when they agrée, ‘and philosophers only when
e i e ek
their calculations, or,fil:&'n agreeing when they have got the
right answer. So_perhaps the situation is satisfactory to all
parties,

One of the{@ost famous attempts to define number was
made. by Berfeand Russcll. 1 will quote, for example, what he
says in his\book An Introduction to Mathematical Philosophy.
“We naturally think that the class of couples is something
dlffc,rij::nt from the number 2. But there is no doubt about the
clagsiof couples: it is indubitable and not difficult to define,

."w}lfzreas the number 2, in any other sense, is a metaphysical
entity about which we can never feel sure that it exists or that
we have tracked it down. It is therefore more prudent to
content ourselves with the class of couples, which we are sure
of, than te hunt for a problematical number 2 which must
always refnain clusive. . . . Thus the number of a couple will
be the class of all couples. In fact, the class of all couples will be
the  umber 2, according to our definition. At the expense of a
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little oddity, this definition secures definiteness and indubit-
ableness; and it is not difficult to prove that numbers so

defined have all the properties that we expect numbers to
have.”

This plausible-sounding definition of the number 2 actually 0
raises many difficulties. For example, are we really sure w.hai
we mean by “the class of all couples” ? Are we to admit physica
objects only, or “all objects of all thought” (in pairs} as mey\rlbe‘l‘s
of the class? If, as we must suppose, it is the latter, 18 seemns
that I can always add to the class by thinking of a fresiy couple,
and thus that I can create couples which you kfiow nothing
about. It is true that you can always test any couple, the
existence of which I announce, to see whethe”it is one; but
that removes the ultimate ““z’”’ from the{sl.ﬁss of coup]es_to

. . . K 5 . Sh
some test for couples, which is just what Russell seems to wi
to avoid.

Another objection is that arguments based on the supposed
existence of classes such as thelelass of all couples lead to
certain famous paradoxes whith appear amusing, but which
are rather.destrdlotiediboanlisesids of this kind. One of these
runs as follows. Some clagses are members of themselves; for -
example, the class of all Classes is a class, and so is a member

of itself. Others, su¢h
A

s the class of all men, are not members
of themselves (g

nce a class is not a man). Consider now the

E:lass of all classes which are not members of themselves. Is
it 2 membear

_jqf itself or not? If it is 2 member of itse_lf, then
by the deﬁx_ntmn of the class to which it belongs, it is not a
Irﬁen%frzt)f itself, This is a complete contradiction, which shows
that

ere is something unsound in the attempt to manipulate
clagses in this way. '

() Arguments of this kind, in which we seem logically to go
) “Tound in circles, suggest awkward questions about the class
of couples. The class of couples, together with the class of

triplets, are two classes, and so should belong to the class of
all couples. In fact, classes

seem in this way to breed in an
alal'mmg manner, Y
; RuSS_ell s definition of a number as a class of similar classes
:e:er}’bmgﬁmm}s, but the difficulties which it involves have
‘ €T been entirely cleared up. There are other schools of
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mathematical philosophers, known as Formalists and Intui-
tionists, who have put forward rival theories to explain what
mathematics really is. No doubt this problem will be much
studied in the future.

The conclusion of all this secms to be that we must do
without a simple and direct answer to the question, “What is
a number ¥’ This will not prevent us from doing mathematics.
T am all in favour of an intelligent theory of number. It should,
add to the pleasure of mathematics, just as an intelligent/
theory of rigid dynamics should add to the pleasure of bigyeling.
But it is possible to pedal along without it. N

Most mathematicians feel that mathematics dog§’not really
rest on what philosophers define it to be, but thdt\t has in it a
harmony which somehow carries it along. Thisview seems to
be supported by M. Black, in his book Ik@“fature of Mathe-
matics. He says: “The title of “The Eatindations of Mathe-
matics’ which the philosophical analysis’ of mathematics has
often received is therefore a misleading one if, taken in con-
junction with these contradictions, it suggests that the
traditional certainty of mathematics. 9. g GHESLIQ o168 2
fallacy to which the philosophet’ is particularly liable to imagine
that the mathematical edifice is in danger through weak
foundations, or that phildsophy must be invited like a newer
Atlas to carry the burden of the disaster on its shoulders.”

The view put(ferward by some philosophers, particularly
the Intuitioniss); that large parts of mathematics rest on
insecure fouRdations and should therefore be abandoned, has
never beemaccepted by the general run of mathematicians. It
is no d 2 mistake to regard philosophers as enemies who
would\destroy our precious possessions. We may take comfort
from>the following sentence in the same book by Black,
“PHilosophic analysis of mathematical concepts therefore tends
¥ become a synthetic constructive process, providing new
notions which are more precise and clearer than the old notions
they replace, and so chosen that all true statements involving
the concepts inside the mathematical system considered shall
remain true when the new are substituted.”

Perhaps we could regard numbers as a sort of medium of
exchange, like money. Most people are really interested in the
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‘goods and services which the world offers, and to them money
is only a symbol for these. But it is not 2 meaningless symbol.
A system of barter, in which we do without money and merely
exchange goods, would be very inconvenient, and practically
impossible in a complicated society. So a system in which we
reduce all mathematics to statements such as ‘I have more o
fingers than you have noses” would be tco cumbrous to con-
template seriously. Numbers are symbols, and very usefuldnd
interesting ones. To mathematicians who work with{'gﬁclﬁ
every day they acquire a reality at least equal tothat of
anything else, AN 3
<
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CHAPTER II
ARITHMETIC

A g long as we are content simply with counting, numbers are
practically just identification marks, like *‘Oakdene’ or “Mon
Abri”, attached to objects in a row. But we can do things With
sets of objects, merge them together, or break them.up into
parts, This is the origin of arithmetic. 7\

Two sets of ohjects are said to be added whet\we think of
the set of objects belonging to either one orsthe’other of the
given sets, This new set is called their sumaBor example, the
set of my limbs is the sum of the set of shyarms and the set
of my legs. The numbers of these sej:s’?f objects undergo a
corresponding addition, which we depote by the sign +. 1
have two arms and two legs, andefour limbs. This (and all
other similar additions) is represented by the formula 2 +2 = 4.
Here the sign =, read as “cglualé”,w&ﬁﬂé’%ﬁﬂéb&hémm of
calculation indicated on the left-hand side gives the same
result as the process of calculation indicated on the right-hand
side, or that the resu{{&.me number written on the right-hand

side. _
It is a commén® experience that it does not make any

difference in what.érder we add sets of objects. This is reflected
in formule sugh as 2 +'3 = 3 -+ 2. That such a rule always
helds is cafled the commutative law of addition,

Another important rule is called the associative law; this
is indicated by the formula

)
WY 2+3)+1=2+03+0D
The bracket notation means that whatever process is indicated.
inside the brackets must be done first, and that then the
brackets may be removed. Thus the left-hand side means
that we are to add 3 to 2, and then 1 to the result. The right-
hand side means that we are to add 1 to 3, and then the result
is to be added to 2. Both the processes lead to the number 6,

13
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14 ARITHMETIC

and that the results are the same is just what the whole formula
means,

Rules such as the commutative law are laws which we
command our numbers to obey, so that they shall represent
certain processes which are usually carried out with physical
objects. We could command them to abey different Iaws, for
example that 2 -+ 3 should not be equal to 3 + 2, but to{
something different. They would do this provided that ihe
proposed laws were not inconsistent with each othcr, bukthen

of course the whole system would mcan somethip&_uite
different from what it ordinarily does. N

Next suppose, for example, that I have thrés ' sets each
containing four members, and that I then countaihthe members
straight through as one set. There are tweldg'in all. This 1s
multiplication. It corresponds to the multiphiéation of numbers
expressed by the formula 3 % 4 = 12. There are commutative

and associative laws for multiplicatjeh,’as examples of which
we may give \J

2% 3=3 ><"z,'1"'
www dbral@ibt-3) Begaw 2 X (3 X 4)-

There is also a “distributive’law” relating addition and multi-
plication, exemplified Qy

3XAY =03 x2)+(3 x1)

‘The symbol - 1% the inverse of +; 3 — 2 means a number
which, when it has 2 added to it, gives 3; or subtraction can
be defined; i terms of the “logical subtraction’ of sets.
Similarly 7 the symbol of division, is the inverse of ;
4 = 2Jmeans a number which, when multiplied by 2, gives 4.

Negative numbers.

0 A negative number is
) number,

and

. just the same thing as an ordinary
except that it carries round with it the sign —. Thus
2 a:{d-;hzl’n Tf‘:’;hdemte Ile%atwe numbers; — 2 means, count
N > £re are. or ma nu .

mnstead of adding, ry numbers about too, subtract

This seems a simple enough idea to us, but it took 2 long

time to get itself clear in s mi e
b ¢ people’s minds, This is probably
ccause an ordinary number, say 2, at once calls up a vision
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in our minds of two objects; and —2 seems t0 mean that
two objects are doing something even less than not existing,
a difficult situation to visualize. It is however quite unnecessary
to perform this feat. It is perfectly easy to count and to give
2 rule of operation as well, and this is all that a negative
number does.

One can of course think of negative numbers as representing\
liabitities, if ordinary numbers represent assets. N

To distinguish them from negative numbers, the ordihaty
numbers are called positive numbers. It is usual to set out the
whole array of positive and negative numbers, togethér with o,
as a row extending endlessly in both directions, g\

=3, —2, =1, 0, 1, 2, FNCY -

The use of negative numbers enables us td attach a meaning
to formule such as 2 — 3, which otherwiseé*we should have to
avoid. It can now just mean — I. s\

To multiply a negative number by ‘a positive pumber, we
first multiply without thought of\sign, and then preserve the
minus sign; thus 2 x ( —3h= —6. To agree with the
commutative law, we must also say, theta(ummdl bk im — 6.
But this implies that multiplication by a megative number is
equivalent to multiplic&on, together with reversal of sign.

If this is to be #fue also when one negative number is
multiplied by another, it must mean for example that —3
multiplied by £% is 6; that i, in multiplication, two minuses
make a plug

Greater . less.

If\[\start pairing off my fingers against a shilling’s worth
of pg:ﬂnieg, I find that there are some of the latter left over.
Inshch a case we say that the number of fingers is less than
o~\the number of pennies. The symbol < is used to mean “less
than”; thus 10 < 12. The opposite to “less than” is “oreater
than”; and this is denoted by >3 thus 1z > 10, We use <
to mean “less than or equal to”. Similarly > means “greater
than or equal to”.

These symbols are easy to remember, since the bigger
number is always at the bigger end.

We bring negative numbers and 0 into this scheme by
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thinking of them in the erder written down abuvz, Thus we
say that —3 is less than —2, and we write — 3 < =2}
similarly —1 <0, —1 <1, and so on.

The scale of ten.

Nature has provided us with ten objects, our fingers, with
which to compare other sets of objects. No doubt this is the {
origin of the use of ten as a basic number in counting. This.*.
number was so used by most of the ancient races whose records
have come down to us, the Egyptians, the Babylonians; the
Greeks and the Romans, N

The system of numbers which we all use today, {g'ns follows.
The first nine numbers in order are denoted ¥ the symbols
1,2 3 4 5 6 7 8 and 9. Nought or zeroJs denoted by o
These are known as the Arabic numeralspter ¢ we do not
have any new symbols, but the next.pdmber, ten, 18 denoted
by 10, ghe gymbol 1 being one placé~ to the left. The next
number is 11, then 12, and all numbets up to g9 can be formed
in this way. After this the nextinumber is 100, the symbal 1
being mioved 4wy HiREesy 18 8UB Teft to denote ten multiplied
by ten. Similarly 1000 means ten muitiplied by ten multiplied
by ten, and so on. This/gives us a simple way of writing down
numbc'rs indefinitely.(™y

This system has "the great advantage that it requires
.‘lml}' ten symbol$\to express all numbers. When it has been
:}:‘g::t H;tt]?{%\’ﬁf%t few cases, it can easily be used to any
e Ji3rknown as the scale of ten, or the decimal

ystem,,.. ¢

TheJold notations for mnu
) . \ mbers seem very curnbrous
conipared with this. The ancient Greeks usually used letters

:,i\?;;{ n:r?:cllbf\r& Thus for example A, B and I meant 1, 2 and 3;
\N3 meant 10; 20 and 3o, and P, % and T meant 100,

i;:tzl::ld 130(;0} 'I_‘lius 321 would be TKA. This is guite a convenient
e taxry small numbers, but it has to be elaborated
© 30 on ind3 e){prtess large numbers, and it gives no idea how
Do ordji?ie y.h A special system was invented by Archi-
not beyond the 0 show Gelon, King of Syracuse, that it was
oraine of sans PO}VEI of language to express the number of

. with which the wuniverse, on a reasonable
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estimate, could be filled. A very interesting account of these
ancient systems of numbers is given by T. L. Heath, 4 Manual
of Greek Mathematics (Oxford, ¥931).

The Roman numerals, with I as the first number, V for s,
X for 10, C for 100, D for 500, and M for 1000, are well
known, and are still sometimes used. )

In these old methods of counting, though ten was 2
specially important number, no use was made of positionto
denote multiplication by ten, in the sense in which we afse"it
now. The only exception to this seems to have been a notation
used by the ancient Babylonians. They had a systofii“of signs
in which ¥ meant 1 and < meant 103 thus <-§:$¥3 meant

22 meant 40. But << << z,\x 22 {m.eant. 26 X 6040,
the displacement of the symbol for 2G\ohe place to the left
meaning that it was to be multipied by sixty. This is
equivalent to counting in the scale f sixty. It does not seem
t0 be known why they attached such special importance to
the number sixty. " ’ www.dbraulibrary.org.i

A relic of this system, Ras come down to us in Gur %é}hqd
of measuring angles, afd. bf counting time. This has come via
the Greeks, who €9 E:;i the Babylonian system of astronomy.
We divide a comp turn into 3bo parts, catled degrees;_each
degree is divided Into 60 parts, called minutes; and each minute
into 6o partscalled seconds (i.c. ‘second-sixtieths). A similar
system is/pf-Course used for time.

Ten(1s"a very convenient number for the scale, somehow
not 00" farge or too small. It has two factors, two and five,
witich makes it easy to see when any number i8 divisible by

26, and

* o these numbers. But other numbers, such as tvs:fe'lve, Would_do
< equally weil. We English have a sort of traditional affection

for the number twelve (twelve inches make a foot, twelve
pence make a shilling), In this country the scale of ten is used
for couating but not for measuring, so that problems about
money, weights and so on involve endless tiresome arithmetic.
Tn other countries this has been avoided by the adoption of
the meiric system of .measurement, -and similar systems for
weights and other things. '

B
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Any number greater than one could be used as the basic
number of the scale. In a way, the simplest choice would be
the number two. In the scale of two, the only symbols which
we should have to use would be o and 1. These would have
the same meanings as before. The number two is then denoted
by 10, the displacement of 1 one place to the left meaning, in
this scale, that it is multiplied by two. Three is 11 (i.e. twp
and one). Four is 100 (1 displaced twice to the left is multiphitdy
by "two. twice). Similarly the remaining numbers up to t{Fghe
are ¥IoT, I11Io, 11T, 1000, IOCI, YOIO, 10II, 1ICO. I};p"diS-
advantage of this system is that it takes so manyyfigures to
represent moderately large numbers. \*

Q"

N

Factors. W

When we multiply two numbers gégether, we obtain
another number; for example, 2 x 33\6. It is then natural
to ask about the opposite process. If We are given a number,
can it be obtained by multiplyingtwo other numbers? And
if so, what are _g}:%?lllr}r%‘?- ggggl ound that there are various
possible ansSwers to this questiofl. T'he number 6 is the product
of 2 and 3; the number 12 is"the product of 2 and 6, and it is
also the product of 3 afid\4. On the other hand, the number
5 is not the product pfany two smaller numbers. It is only the
product of 1 X 5, which is not at all interesting.

If a number €an be expressed as the product of two other
smaller numbeérs, these are called factors of it ; thus 2z and 3
are factors,9f.6, and 3 and 4 of 12. We can find out whether a
number ds, @ factor of another number by dividing and seeing
whth t{mre 1s a remainder left. Thus on dividing 7 into 43,
wetake 7's away from 45 as often as possible, that is 6 times
andithen 3 is left. This amounts to expressing 45as {6 X 7} + 3:

(“Clearly 7 is not a factor of 45; it i i
pleariy 7 . 5; but it is a factor of 42, sinc
I;(Z)thmﬁg 18 left after the division. In fact we ﬁ‘f‘nd 'thai
=0 X7

Owns'ott'ietxmes one of the factors of a number has factors of its
owm; | _l:ﬁ 12=3 X 4, and 4 = 2 X 2. In this case we can
press the original number as a product of more. than two

factors; thus 1z =
: =3 X% 2 X 2, There may e
factors; thus 6o =2 x 2 x 3% 5 y even be several



ARITHMETIC 1G

One thing which emerges from all this is the special position
occupied by those numbers which have no factors, such as
2, 3, 5 and 7. These are called prime numbers. It is easy to
write down a great many such numbers. The next few are
11, 13, 17, 19, 23 and 2g.

Now in some of the above cases in which we have expressed
a number in factors, these factors are prime numbers, In suchd\
case we say that the number is expressed as a product of pgime
factors. For example 6 =2 X 3 and 21 = 3 X 7 are('such
expressions. In other cases, such as 42 = 6 X 7, one Ofy nore
of the factors is not prime (here 6 is not prime). Bug now we
‘can write 6 = 2 X 3, and so0 42 =2 X 3 X 7. We have thus
expressed 42 as the product of three prime facfers.

These examples suggest that any numbenwhatever can be
expressed as a product of prime factors. Theteader should try
a few examples, and will find that it alyays works, Another
example is the above factorization of the number 60. But there

is more in it than this. In all siodple cases such as we have

considered, there is only one way of expressing any given
number as a product of pg&mé fa@tmg,dmt;hé}' ), frivial
variations like changing thewprder of the factors. Fof eximple

60 is equal to 6 x 10, and also to 4 X I3; writing 6 = 2 X 3,

I0=2 X 5, we obtaltd 60 =2 X 3 x 2 X 5, and writing

4=2xz2and1 %3 X 5, we obtain 60 =2 X 2 X 3 X 5.

So the result isythe same (apart from the order in which the

factors are mulfiplied) in whichever way we do it.

These calgulations suggest strongly the following result: a
number can*be expressed as a product of prime factors in one
way onlyy This is true, and not so very diflicult to prove, but
it is ot quite obvious. We are so used to thinking of a number
as, the product of its prime factors that we are apt to regard

.0t ‘result as quite obvious. In trying to prove it, the main
S Hifficulty is to avoid assuming the truth of something equivalent
to what is to be proved. For example, is it obvious that the
product of two primes cannot be equal to the product of two
different primes? However, we must leave the matter to books
which deal with this subject.

The factorization of fairly small numbers is quite easy. If -

d very large number is written down at random, or expressed
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by means of some formula, it is often very hard to find out
whether it has any factors or not. In a sense there is no difficulty
about it, because one would merely have to divide by all
smaller nurbers o see whether any of them left no remainder.
It is just that this would take so long to do, that (if the number
were very large) one could not finish it in a lifetime. Even if
we could persuade the whole human race to devote their lives
to factorization, we could only factorize a small part of the
numbers which can easily be written down.

There are some simple rules for factors. If the figlre
representing units is even, 2 is a factor. If all the separate
figures added together give a number divisible by 3¢then the
original number is divisible by 3. There are a fewantre rules
of this kind, but they do not take us very fat\Whe general

problem of finding the factors of very large numbers is
unsolved. ) \\

X 3

Prime numbers, O

The prime nwmbers can be regarded as the rav terial
out of which Al S h LB e made up. All numbers
can be expressed as products of\primes. Let us then think how
to find the primes, and how many of them there are.

A simple method of finding the prime numbers, used since

ancient times, is cal;g:‘ ‘the sieve of Eratosthenes. Suppose for
example that we w

adt to find all primes less than 100. Write
out all numbers {fomn 2 to 100 in a row, Now 2 is a prime, but

no other everhtiifnber is, since they are ali divisible by 2. So

cross out albsthe even numbers (4, 6, 8 .., ) after 2.
primTh first’ number not crossed out is 3, which is then a
ey '

e oW cross out all subsequent multiples of 3 (6, g, . . - .)-
:;_‘;31‘113] guéﬁg:f;tsggit:i .6, will have been crossed out twice,
() " Proceeding in this way, we come to the primes 5 and 7
and cross out multiples of them. All other numbers up to Yo,
and a great many others, are crossed out. Now look at the
nurr{?l‘)?ers not crossed out. They are all the primes up to 100.
b hy ?re they primes? Because if a number less than 100
two factors, they obviously cannot foth be greater than
or equal to, 10. So one at least must be less than 10, But wé

28N
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have crossed out 21l numbers with prime factors less than 10,
and so all numbers with any factors less than 10. Hence the
numbers left are primes.

This ‘“‘sieve’” method, which can of course be used up to
any limit, is a good wholesale method of finding prime numbers.
But it does not tell us much about how many of them there are.

It was proved by Euclid, or some mathematician of hisy
period, that the sequence of primes is endless; or that, as we
say, there are an infinity of primes. In other words, however
far we go along the sequence of the numbers, there are{@kways
more prime numbers heyond. The proof of this is veryingenious
but it is really quite simple, once you have thought of it (or
Fuchd has thought of it for you). S

Let us take a fair-sized prime numbetNor examnple 97
(this is the greatest prime revealed by the)Sieve for primes
less than 100). We want to prove the exisience of at least one
still larger prime. To do this, considch ‘the number

(2 X3 X5 X7 X ay- X 97) -+ 1,

which is the product of all th& pi’im&éwpdtﬁ‘wi,bpiuym:gﬁow
this number itself may be a’prime. I do not know whether it is
or not, but, if it is, thefact that it is proves at once what is
required. It is an example of a prime greater than g7. Next
suppose on the othér Fand that the number Wwritten above is
not a prime. Then'it has prime factors. But none of these
prime factors/caw be the same as any of the primes 2, 3, . . -
up to y7; foron dividing by any such aumber we obviously
get the pémainder 1 (this of course was why we added on the
1) Héx;cé any of the prime factors must be greater than 97,
angl\this again proves the existence of primes greater than ¢7.
Df course we have merely taken g7 as an example. The

~argument does not depend in any way on this particular prime

‘number, and could be applied equally well to any other. We
must therefore conclude that Euclid’s theorem is true.

In modern times mathematicians have spent a great deal
of time and energy in investigating the distribution of prime
numbers. Such problems are usually very difficult, and a great
part of their interest lies in the ingenious methods which are
required to solve them. I will mention only one such problem.
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A glance down a table of prime numbers shows that they often
go in pairs, separated only by a single even number. For
example, 11, 13; 17, 19; 59, 61; are such prime-pairs. It is an
obvious suggestion that such pairs, like the primes themselves,
form an endless succession, But no method is known of showing
whether this is true or not, and it remains a complctely
unsolved problen

N

Sguares, cubes, indices. R,

By the square of a number we mean the product &f)the
number by itself; and we denote it by affixing a littleaito the
top right-hand corner of the pumber. Thus 1 X & 1* = 1,
2X2=2%=4, 3X3=3%=09, are the squares of 1, 2
and 3. By the cube, we mean a number multiplied by itself,
and then by itself again; for this we use\ little 3; thus:
IXIX1=1"=12X2xX2=2"=83(X3 X3 =13% =2y
are the cubes of 1, 2 and 3.

The square of number is also caliéd the second power of
the number, and the cube is calle@the third power, Similarly
the product Wi fodbreglidirfiiytare 18 called the fourth power,
and so on. The notation forefourth and fifth powers is quite
similar to that for squargs and cubes; for example we write

2 xg"%z X 2 = 2% = 16,
3XG X3 X3 X3=3"=u
and so forth. N$H3X3%x3=3 H

The littlt{ mupber in the top right-hand corner, which says
how many falc\tors‘are to be multiplied, is called an index.,
The infroduction of indices gives us an opportunity of

illustrafing the difficulty of determining the factors of a given
number. Fermat, a famous French mathematician of the 17th

cefitury, conjectured that all the humbers 2® + 1, 2¢ - 1,
¢ 1 ;
/N% 1 1,2% +1,2% 4 1, and so on, are prime numbers. Here

‘each md_ex is twice the one before, and the numbers increase
vegf rapidly as we proceed. The first three are equal to 3, 17,
and 257, and these are all prime numbers; and the next one

gnaltio a lt)_nme number, Fermat’s conjecture obviously rested
ese facts, but it was not a very good idea, because the
next two such numbers are

u not primes, Euler, a great German
mathematician of the 18th century, proved t,hatg
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2% -1 = 641 X 6700417,
nd in the igth century it was proved also that
2% L1 = 274177 ¥ 67280421310721,

“he Iahour involved in doing arithmetic on this scale can be
magined. In recent times still more of Fermat’s numbers
rave been factorized,

Very large numbers can be expressed by writing a number
vith 5 moderately large index. According to Archimedes, th€,
wmber of grains of sand which the universe could coptain
would not exceed 10%; in the decimal potation this 3s 1
ollowed by 63 o's. The idea of calculating the nuinBer of
particles in the universe has been revived recentlyg ‘Atcording
to Eddington, this number is 2 X 136 x 2%, .Whitten out in
full, this would be a number of eighty ﬁgure{u

9>\
Axiom, proof, theorem, hypothesis. L

In this chapter we have been ablepullustrate the general
course which mathematical writings ‘take. They begin with
Certain axioms or primary assumptions, wbich e sbpposeih i
be agreed upon between the wrifer and the reader. Such for
example are the laws governiig addition and multiplication,
and the axiom of infinity.These are, so to speak, the rules of
the game. e

The object of mghematics is to prove theorems, that is,
particularly striking and important results which follow from
the axioms. Iprzerample, the statement that “a number can
be factorized ifi'ofie way only”’, and “the set of prime numbers
is endless” &re important theorems.

"T'hese thcorems are derived from the axioms by means of
proofs;{a proof is a chain of reasoning, each link of which
shoul@*be obviously valid according to the axioms, but the
final result of which may be far from obvious. Many of the
Rroofs in mathematics are very long and intricate. Others,
though not long, are very ingeniously constructed. Some
theorems are capable of being proved in several different
ways.

The proof that the set of prime numbers is endless is a
good example. It is not long, but it involves an ingenious idea
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which catches the attention of anyone capable of being
interested in rnathematics,

In many cases, mathematicians first guess thcorems, and
afterwards supply the proofs, Such a guess is called a hypo-
thesis, Naturally it requires much experience of mathematics
to be able to put forward reasonable hypotheses. The power
to make hypotheses which are both interesting and reasonablé
is a sign of mathematical originality. It leads to many advances, -
in mathematics. As examples of hypothescs, we may taked o/
statements “the numbers 22 4 1, 2¢ 4+ 1,.... are all pl:lmeq
and *'the number of prime-pairs is infinite”. The forfney, due

to Fermat, turned out to be false. The latter has'ns'& er been
either proved or disproved, A\S

\

N



CHAPTER IIT
ALGEBRA

Representation of nuinbers by letters. .
As an example of the sort of thing which mathematiciang ‘dgy

with numbers, suppose we set ourselves the following problem:
to calculate the difference between the square of any, aumber,
and the square of the number next after it. O ?

In the first few cases, this is quite easy tQ do) We have -

22 — 12 =4 — T =3 )
BIATRIANSY :
42 :32 ;i :9[‘;_—_x

52— 47 =25 W

and so on. 'T'o go on very far ywith khisv}m@lhﬁﬁﬁ?é‘?gﬁy
tiresome. Also, the results aiftten down on the right-fand
side suggest that some sort of‘rule is operating, and that, if we
could find out what it wa§we could by-pass a fot of arithmetic.

Let ug examine oné,base more closely, to find out if possible
what is really characteristic about it. Take for example the
third case writte down above. It can also be written as

A/

AT G-
7\
where {304 1)? means that the numbers in the bracket are to
be added together, and then the result is to be squared. But
'ag&'}"ally we could do the squaring without doing the addition
\”ﬁrs‘t This would go as follows

3+1

31
3+1

25
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To get the first row of figures under the line, I multiply each
of 1 and 3 by 1; to get the second line, I multiply each by 3,
and set out the results one step to the left, for convenience of
addition. Then add, and we get the answer as written.

Our example now takes the form

P2 +(Ex3)+1—3 =7
"T'his shows whete the result really comes from. It is made up
as (2 X 3) + 1, the 3* terms cancelling out. (\)

Now exactly the same argument could be used in any gthef
case. For example in the next case we have

742 = (4 PP =4 (2 X 4) 1 4= () T
and that gives the result, 9; and so in all the other cases.

I hope the reader agrees that it would BeNntolerable to
have to write out separately a lot of differentsums of this kind,
each of which is really quite similar_tolall the others. The
question arises whether we cannot findweme wholesale method,
by which we can in some sense do them all at once.

The memmmwigt%gﬁ using a letter, for example
n, to denote each of a class of Jumbers. For example, in the
above case let n denote in tdtw each of the numbers ¥, 2, 3,
and so on. At any moment'we can of course focus our attention
on one particular number, 'e.g. 20, and say “let n be 20”.

If n denotes angqmber, the next number is # + 1. The

Q.

squares of thesehnumbers are written »? and (n + 1)~ Our

problem then takes'the form, what is the value of (n + 1)? — 7%
where # has’ay of the values 1, 2, 3,...... To solve it, we

proceed efactly as in the case # = 3. To calculate (z + 1),
we W e\

O
A\
3

,_'_

I
o

41

/
Hom o

ko

o e iy

Subtracting #2, what is left i o N o

written in the form (3 5m) x The resalt can be
(n +1f —nt = (2 x n) 4 1.

In products involving letters, the sign of multiplcation x
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is usually omitted. Thus we write 2n instead of 2 X n, and we
should write the above formula as

n+ 1) —nt=2an-1.
( )

It is easily seen that this formula gives the above arithmetical
results as particular cases, when we take z to be 1, 2, 3 or 4.
But now any number of other cases can also be derived fromy
it; for example 86 —85° =2 X 85 +1 =170 + 1 = I7I)

The branch of mathematics in which classes of numbersiare
denoted by symbols, such as letters, in the above way, igtalled
algebra. The expression just written down is an example of
an algebraical formula. It is equivalent to 2 whele class—
usually (as in this case) an infinite class of arithmefical formulz,
Not only so, but it exhibits what is really chatacteristic about
the arithmetical formule. The algebra goes, to*the root of the
matter, and ignores the casual oddities of particular cases.

In many formulee we use two or. nidfe letters at the same
time. The classes of numbers from(Which the letters are to
take their values may be the samelor different. Ior example,
we might say “let @ and 4 each dénot¥ tiydbositibeaintegery.
A formuta involving such 4 end b is for example

(a + b= a? + zab + b

This can be proved¢in’exactly the same way as the above
particular case, i ﬁh\i‘ch a was 3 and b was 1.

This is actually)the simplest of a chain of formulze, which
are together known as the binomial theorem. The pext such
formula is amexpression for the cube of the sum of two numbers,
and is O\

O (@4 07 = a® o+ 3@ o 3abt B
Theére are some kinds of algebra which are so complicated
¢that/they use up the whole alphabet, both capital and small
fetters, and the Greek alphabet too. A few years ago a mathe-
matical paper was published in which a Chinese character was
used as one of the algebraical symbols. Actually the possibilities
are endless, since we can aiso attach suffixes to letters as
additional lahels, and write for example, my, my, . .. 9, .. .
as algebraical symbols.
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A few letters have come to be used in a different way, so
that they always {unless there is a local rule to the contrary)
mean the same number. The letter ¢ and the Greek letter =
are used in this way to denote spectally important numbers.

Factars in algebra,

As an example of algebra, let us multiply together the two
expressions @ + b and @ — b. I call these expressions rather
than numbers, because, though they represent numbers\,\they
do not just do that, When I write “a + b or “a — bl\.Tnean
“think of any two numbers you like, and then thigk of their
sum or difference”. The particular numbers théught of will
not matter in what follows. This is really<the esscnce of
algebra, that the particular values of such.expressions rather
fall into the background; it is the way in}?liich the numbers
occur in the expressions that is of interest.

The multiplication goes in the safie’way as in the previous
section; we can write it as R\
(oo SYprlmliprh) OB - B) — b(a -+ b)
23a% + ab —ba — b2
= gt — bz’
the ab and —ba caneelling out.

Hence the prod{{:;‘r of @ —band a + b is a® — b2 Con-
versely, we can say that the factors of 4% — b2 are @ — & and
@ + b. This_is weally just another way of saying the same
thing. N\

It is ifdportant to notice that the problem of finding the
factors of @® — &% in algebra is quite different from that of
findig the factors of particular values of this expression in
arithmetic, Consider for example the factors of 52 — 42, i.e.

P \2} - 16 = 9. The algebra gives the formula

FP—4r={(5—4) (5 + 4)-

This is correct arithmetic too, but in arithmetic it has not got
us anywhere, '

because in fact § —~ 4 = 1 and =19, 80
that the first factor is trivial, Sand4the sem:md5 c-rfl-n“.itse?f3 be
factorized agam. From the point of view of algebra, this is
Just an accident due to the particular values of ¢ and b chosen.
In algebra, @ — band a + b are the ultimate factors of a* — b2,
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You cannot factorize @ - b any further, though you can, as it
happens, factorize 5 + 4.

The algebra books are full of examples of factors of
algebraic expressions, Here we shall recall just a few of them,
which the reader should be able to verify quite easily. We have

@ + 0% = (a + b) (a® — ab 4 %)
@ — 0% = (a —b) (a® + ab + b?)
and at —b* = (a —b) (a +b) (a® + 52%).

None of these cxpressions can be reduced down any, further
into factors. e\
All these formule are examples of algebraicalldentities: that
is, they are equations in which the two sideb are equal for all
- values of the numbers «, B, . .. . , and npt\pecause they have
any particular values. \’\

P
"

N
2N
'\

Tnegualities. O )

As another illustration of algebra, let us consider what is

‘meznt by an inequality in algebea: Invarithivetitbasy Yerd @ity
15 just a relation between pattitular numbers, such as 2 < 3-
In algebra, an inequality jnvolves letters such as a, b, ... which
represent whole classei:of numbers, and an inequality is a
relation of “greater than” or “less than” which is true for all
numbers belongingife these classes.

As an example, of an inequality in algebra, we shall show
that the squasdof the sum of any two numbers can never be less
than four tighed their product. Let us denote the two numbers
by 2 and~/Then in symbals the theorem to be proved is
{2 + b}\{\> 4ab.

Iisis easily seen to be true in particular cases; for example
(2<% 3)* == 3 = 25, which is greater than 4 x 2 x 3 = 24;

“and (3 4 4)% = 7% = 49, which is greater than 4 X3 X4=48.
\ at 1s wanted however is a proof that the inequality is true
independently of the particular values of the numbers con-
cerned. Such a proof must depend merely on the way in which
the @ and b occur in the formula.

If one of the numbers, say a, is positive, and the other, 5,
is negative, the result is trivial. This is an expression often used
by mathematicians, and it means that the result is so obvious
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that no formal proof is needed. The standard of triviality of

course tends to alter as we become more experienced niathe-

maticians, In this case, if @ is positive and b is negative, the

left-hand side of the proposed inequality, (@ - #)?, is positive,

and the right-hand side, 4ab, is negative. The incquality then

merely asserts that a certain positive number is greater than a
certain negative number, and this is trivial.

If a and & were both negative, the inequality would amoUnt
to the same thing as the corresponding formula involving—%
and — b instead of @ and b. Hence it is sufficient to_gonsider
the case where @ and b are both positive. %

To prove it in this case, we observe that (&
{a + by == a® 4 2ab + b%;

the difference between this and 4eb is a? 52ab -}- b%, and we
have therefore to prove that this expreésfion is necessarily
positive; and it is so, because it is €qual to (a — 5)?, by the
same rule for squaring an algebraic\expression involving two
numbers; and the square of any.fiumber, positive or negative,
1s positive. Wihisddixesl liraregigrdel proof.

We have been careful to tite the inequality with > instead
of >, because it may happen that the two numbers (¢ -+ 5)?
and 4ab are actually equal. This will be so if the numbers a
and b are equal, siﬁ;@:uéach side of the proposed inequality is
then 44%; and a dittle’consideration of the argument will show
that this is the baly case in which equality can occur,
.. As anotherlézample of an inequality, we shall prove that
if a, 4, b fmd B represent any four numbers, then

(a4 + bBY < (a® + %) (42 + B?).

Fg,f}i’f}dmple, if @=1,b=2 A =3 and B =4, then the
eftchand side is (3 4 8)* == 112 = 121, and the right-hand

sside is

(@ 42) (549 = (1 +4) (94 16) = 5 x 25 = 125.
There is no case in which this inequality is trivial, since both
sides of it are obviously positive. |

To prove it, multiply out both sides in full; it takes the form

@A+ 20AbB + BB 42 4 @B - BRAT 4 BB,

The difference between the right-hand side and the left-hand
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side is @®B? — 20408 + 8*4% and by the formula for squares
this is equal to (a8 — bA4)% As a square, this is necessarily
positive, or at least zero. Ilence the right-hand side s at least
as great as the left-hand side, which was to be proved.

The subject of inequalities has occupied the attention of
many mathematicians in recent times, and many remarkable |
results of the above kind have been proved.

Progressions. L
As another example of algebraical formute, we shali/next
sum the arithmetical and geometrical progressions, These will
be required later in the book, and anyhow théyrare good
examples of the way in which letters are uged)to represent
whole classes of numbers, '
A number is said to be the arithmeticak\n{ean of two other
numbers, if it is equal to half their suth, T.c. if twice the first
number is equal to the sum of the sthér two, Thus 2 is the
aritbmetical mean of 1 and 3, since 2°X 2 = 1 -+ 3; similatly
5 is the arithmetical mean of 3 and 7 unddbsyiBaRA S "
An arithmetical progressionys a sum, such as 1 243 -4,
or 3 - § + 7 + g + 11, inwhich each term is the arithmetical
mean of those on cach side of it. It is of course easy to write
down the values of t}ie}ée sums—they are in fact 10 and 33
respectively. But what We now want is a general rule by which
the values of al\such sums can be written down at once,
however many{fetms they contain. As the simplest case of this
problem, C(.Ql”SidEI‘ the sum
\1 42144+ Fm—1)+n
contafni\ng # terms, where # is any positive number, The
prablem of summing this for every n is no longer a problem
(“ofarithmetic, It is one of algebra, since what we have to look
for is a general formula expressing the sum of the progression
in terms of #, valid whatever particular number # may represent.’
"This problem can be solved in the following way. Suppose
first that # is an even number, i.¢. # has 2 as a factor. Let
# = 2m, say. Let us begin by adding the first term of the pro-
gression to the last; the result is # + 1. Next, add the second
term of the progression to the last but one; the result is
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2 3 # — 1, which is again z + 1; next the third term and
the last but two make # + 1, and clearly this is a general rule.
It is on the recognition of the existence of such gencral rules
that proofs in algebra depend.

Now all the terms can be paired off in this way, since we
have supposed that there is an even number of terms. The .,
number of pairs is half the total number of terms, i.e. it is 7
each pair is equal to # + 1; consequently the whole sumi s
equal to m(n I 1). \

This solves the problem if » is an even number. If #'is an
odd number, then # — 1 is an even number, and ¢dhséquently
the sum of the terms as far as 7 — 1 can be obtained from the
above formula, Let 2 — 1 = 2/, say. Then the $um of the terms
as far as # — 1 is In. Hence the total sum an +n=n{l+1).
The problem is therefore solved in ali cdses! For example, the
sumof 1 +2 +...... -+ 100 is 5@ %\icu = 5030, and the
sumof 1 +24...... + 149 is 349 X 75 = 11175

Any other arithmetical progression can be summed by using .
the formutée wlfudy dbrinadgfor cxample
3485+ +25isequalto3 +34+..... + 3 {twelve
terms) +2(1 +2+... LI} =36 +2 X 66 =36 -+ 132 = 168.
It is also easy to ok{tain general formulz for all such sums
in a similar way., .

There is another sort of progression called a geometrical
progression.. A(fumber is said to be the geometrical mean of
two other nutrbers, if its square is equal to the product of the
other two.iumbers; for example, 4 is the geometrical mean of
2 and 8;and 6 is the geometrical mean of 4 and g. The origin
of heuse of the words “arithmetical” and “‘geometrical” in
the\sense given here seems to be rather obscure, but the ideas
itrvolved are very simple.
~ A geometrical progression is asum suchas 1 42 + 4 + 8
or 2 + 6 -+ 18 + 54 in which each term is the geometrical
mean of its two neighbours. The general form of a geometrical
progression beginning with 1 and containing n terms Is
1+a+a? +oeen +a""2 +-a""1, The problem of summing
the geometrical progression consists of finding a formula for
this sum, depending of course both on #, the number of terms,
and on g, the quotient of each term by the one before.
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In this case it is no use adding pairs of terms, and a
different device has to be thought of. Suppose that we multiply
the whole progression by @ (the same a, of course, as occurs
in the progression). The result is @ + at+..... a4+ an
Now subtract the original progression from this. The result
is @* -~ 1, since all the other terms cancel in pairs. Now what™\
we have obtained in this way is @ — 1 times the original S@m;
The value of the original sum is therefore (a* — 1) = (@ & I)
Yor example, 1 +2 +4+8 is (2a*—1) = (2 —1) ie.
16 — 1 == 15, Naturally the formula shows to moresadvantage
when it is applied to longer sums, in which d;rect dddition
is not so easy,

The unhnown x. )

There is another way in which lett sﬁrc used in mathe-
matics to represent numbers. We \36metimes write a letter
instead of a number, not because\we want to represent a
whole class of numbers, but becaiise’ we do not know what the
number in question is, An urﬂmown aumbibr-as) ieftan, sepia-
sented by the letter . %3

An equation is a formula which asserts that two numbers,
arrived at by different protesses of calculation, are in fact equal.
An equation differ f@m an identity in the fact that it is not
usually true for all S\aluf:s of the symbols which oceur in it, but
merely for some\particular values of these symbols, or even
for only one’siich value. It is then a question of finding out
what these Parncular values are. This is known as solving the
equati

If, thc numbers on the two sides of an equation inyolve an
unkfissvn number #, to solve the equation is to find the value

of values of % for which the equation is true. Simple examples
of cquations are 2x + 3 = 11, and ¥ + 1 =2x 4+ 4. The
technique of solving such equations is taught in algebra books,
It can at once be verified that the solutions of these equations
are x = 4 and x = — 3 respectively,

Equations are often presented to us as practical problems
Suppose that T have 3d., and that two people each give me the
same sum, and that then I have r1d. What sum did they each
give me? Suppose.that they each gave me » pence. Then the

C
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sitnation is precisely represented by the former of the above
equations. Each, of course, gave me 4d.

Readers will probably remember being asked at school to
solve problems of this kind: “A father is four times as old as
his son. In twenty years time, he will be only twice as old.
Find their ages.” Here there are two unknowns, the ages of
the father and of the son. Let us denote them by x and 3. "The
first statement is then expressed by the algebraic cquafigh
x = 4y. After twenty years, their respective ages witl\\hate
become x +- 20 and y + 20. Consequently the sccond”state-
ment is expressed by the equation & -+ 20 = 2(y #%20). These
two equations are called “simultaneous equatiogs®; since they
are both true for the same x and y. It can &asily be verified
that the solution is & = 40, y = 10. For thé\method of getting
this I must again refer to algebra bodks.”

Now consider the following problem: “A father is three
times as old as his son. In ten years™time the son will be twice
-as old as his father. How old arg\they now?”

"This problemis.ohwie lﬁrénn{diotic one; but the algebra
goes along quite happily. If the father’s age now is x and the
som's is y, the two stitements .are represented by the -
equations A

x F.3}?;\J’ + 10 = 2(x+ 10)
and the solution h‘\% = —6, ¥y = — 2. 'T'he point is that the
algebra is a machine which does just what it is asked to do,
and no morei’As we have forgotten to mention that there
cannot bejgegative ages, the data are actually quite consistent,

and the{answer, though-absurd if related to real life, is perfectly
corrget” mathematically.

: IE}zé; theory of numbers.

part of algebra in which we ask
the divisibility of certain numbers by
bility of expressing numbers by means
oy < of certain kinds, and other things of
that sort. It is a very ancient subject, which was studied
particularly by Diophantus, .4 mathematician of the third
century a.D, It has this peculiarity, that many of its problems -
are very easy to state, but very difficult to solve,

" questions about factors,
other numbers, the possi
of algebraic expressions
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Some examples, involving prime numbers, have already
tezn considered in Chapter 1I. As another example, consider
the following problem: to find numbers #, v, and & such that
x* - v* = 2% This has an obvious connection with the famous
theorem of Pythagoras, that the square on the hypotenuse of
a right-angled triangle is equal to the sum of the squares on,
the other two sides. A well-known solution is obtained by
taking x = 3, ¥ = 4, and & = 3, since then &* = g, y? =10,
#* = 25, and 9 + 16 == 25. Another solution is ¥ = 5, gn&= T2
and ¥ == 13, since 25 + 144 = 169, G\ :

What we ask in the theory of numbers is wliether it is
possible to manufacture such solutions indefinitely; or, what
comes to the same thing, whether there is algéneral formula
which always gives solutions, The result ie\as follows. Let
@ and b be any two pesitive numbers, of ’wh}ch @ is the greater;
and let o = 4® —§% y = 2ab and\&="a® + 5% Then the
equation is satisfied, whatever the yalwes of ¢ and b. This is
casily seen from the rule for squariong the sum of two numbers.
We have (2% — 0% = a* — 24%D7 -jwhiwatttalibby® y-engid?;
adding, the result is o 4- 24%° -+ b4, and this is {a® +-5%)%
This proves the general rule. The 3, 4, 5, example is formed
by taking @ = 2 and p=>1, and the 5, 12, 13 example by
taking @ = 3 and b £'2 As another example, let a = 5 and
b=2. Then x =%, y =20 and z=2g; and it is easily
verthied that 218N 20 = 2¢2

This is mefely an example of a large class of problems which
were consi%e:ed by Diophantus and other mathematicians.

'T'his patticular problem had a remarkable sequel. Fermat,
the celebrated French mathematician already mentioned, was
very tnuch interested in these questions. He possessed a copy
of-Bachet’s Diophantus, in the margin of which he noted some

("uf+his own discoveries or conjectures. One of these marginal
fiotes asserted that it is impossible to solve the equation
& 4 9" = 2" when 7 is any number greater than 2; that is,
that there are no pumbers x, ¥, 3 such that 3% 4+ 3% = 3% or
x* 4 % = z% and so on. This assertion has become known
as Fermat’s last theorem. The remarkable thing about it is
that to this day no other mathematician has been able either
to prove or to disprove it. It is not even known with certainty
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whether Fermat had a proof, or whether he was only guessing,
As he made other conjectures, some of which have turned out
to be false, we may think that it was a guess. If s0, it was a
remarkably good guess, since the theorem has been verified
for a great many values of n, though not, as Fermat said, for
all values, )

Another theorem of Fermat, this time not very difficalt tg
prove, is that, if p is a primne number, and « is another nunber
not divisible by p, then ¢"~! — 1 is divisible by p. For ezatnpie,
tﬂkﬁp == 7 and g = 2, Then 28 — 1 = 64 — 1 = 63’ .ﬁ\\"hi(jh 18
divisible by 7. On the other hand, if p = g, which™is not a
prime number, and 2 = 2, then 28 1 — 2_:,Q{; 1= 255,
which is fiot divisible by g. O

Another celebrated theorem in the theoryof numbers, due
to Lagrange (1736-1813) asserts that every\\msitivc number is
the sum of four squares, For example 5\: 22 1+ 12 4 of 4 0,
and 12 == 32 4 1% 4+ 12 4+ 12 The pont of the theorem is that,
however large the number congerfied may be, it is never
necessary to ysewuibediittofoyragures to express it. Compared
with the proofs of many thepkems in this subject, the proof
of this cannot be c:ﬂleér vety difficult, but it is beyond the
scope of this book. Thi¢ theorem has suggested many others
of the same kind, inyelving cubes, fourth powers and so on.

\\



CHAPTER IV
FRACTIONS

Ix the previus chapter we gave some examples of equationgy,
containing an unknown ¥, the value of which had to be fourd
from the equation. It happened that in each case there was’sn
¥ which satisfied the equation; for example 2 + 3 &1 is
satisfied by x = 4. But there are plenty of cquatiohs which
cannot be satisfied in this way; examples are 2x s=\t,’2x = 7,
and 3x = 5. Thus there is no number which.%fén doubled,
gives I or 7, or which, when multiplied by-gy gives 5.%

This is a serious situation, not only.Betause we like to
be able to solve equations, but becauserin real life we are
familiar with “halves”, “quarters” afid so on, and we think
that there ought to be something i t¥athematics which would
enable us to think accurately abeyt suchtidhpaylibrary.org.in

Since an equation like 251 is not satisfied by any of
the numbers alrcady used, s¢*must, if we are to do anything
with it, invent a new,.syStem of numbers, with different
properties, by which if\can be satisfied. Fortunately we do
not have to make a{completely fresh start; we can make up
our new numbers ot of the old ones,

We now cofisider, net just single numbers, as before, but
pairs of numblers, which might be written together in a bracket,
as for example (2, 3) or, in algebra (a, 4). Each such pair is
now theught of as a single element of our new system, and
mighgbe“called a “complex number”, or simply “a number”
in anew sense. Such numbers are of no use until we define the
males by which they are to be used, We must say what addition
“and multiplication mean in the case of such numbers. Of
course the “addition” and “multiplication” must*have some
connection with ordinary addition and multiplication, or we
should not call them by these names. We could make up a
considerable variety of rules, but most of them would lead to

. " The insolubility of the equation 3x = 2 was remarked on by Gilbert,
The Gandoliers, Act 11; ‘One can’t marry a vulgar fraction’.

37
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nothing of any interest. Those actually adopted are as follows.
The sum of the numbers (¢, 8) and (¢, d}, which is written
(a, B) + (¢, d), is defined to be (ad + bc, bd). Thus for example
(2, 1) 4+ (1, 3) is (7, 3). The product of the numbers (a, b)
and (¢, d), which 1s written (e, b) % (c, d), is defined 10 be
{ac, bd). Thus for example (2, 3) % (1, 5) is (2, 15} o

The multiplication rule is thus a very simple one. s
obtain the product we multiply the two first comp(mcnts,,rg_!‘nd
also the two second components of the given numberg:yThe
addition rule is less obvious, and its purpose only \appears
later. ~

We say that the two numbers (a, ) and (¢, 4@y are equal,
and write {a, b) ={¢, d), if ad = bc. Thus for example
(3, 6) =(1, 2). It might be supposed th@ they would _on’l’y
be equal if ¢ = cand & = 4. This is a speciabcase of “equality”,
but it turns out to be inconvenient tosrestrict the definition
to this case, CHO

We must now cxamine the properties of this system of
numbers. Considetbfinstithogeomgimbers whose second com-
ponents are 1, such as {2, 1)and (3, 1). For such numbers the
rules of addition and multiplication reduce to

(a, :)sk @ 1y=(a+¢ 1)
(}‘,\I) X (e, 1) = (ac, 1).

Further, the 6 numbers (2, 1) and (c, 1) are equal if, and
only if, & ={¢)

We s,eé‘ﬁat the numbers of this special class have exactly
the same-properties as the ordinary numbers which we were
using\before. In any relation involving ordinary numbers we
may, therefore just as well use the corresponding numbers of

£ this special class. The number {a, 1) does just as well as a,
and for all practical purposcs they can be treated as being the
same thing.

Suppose now that we interpret the equations considered
above, not as relations between numbers in the original sense,
but as relations between numbers in the new sense which has
Just been explained. Consider for exam

: : ple the equation 2x—1.
his is now interpreted to mean (2, 1) X # = (1, 1), where

and
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xisa “number” of the form (a, b). It is easily seen that a solution
of this equation is obtained by taking x to be the number (1, 2);
for by the multiplication rule (2, 1) X (1, 2) = (2, 2), and,
by the definition of equality (2, 2) is equal to (1, 1).

Any equation of the form gx =— p, where p and ¢ are any
numbers (in the original sense} can be solved in the same way,
We interpret it to mean (g, 1} X & = (p, 1); and the solution
s % = (p, g), since (g, 1) X (p, @) ={pg, @} = (P> 1) , O,

We could develop the theory of these numbers inmote
detail, but perhaps it is unnccessary to do so. It will be seen
that they have precisely the properties of the familiar fractions
(vulgar fractions, as they are sometimes called) ‘The number
a
3 \
numerateor, and the second component ¥ #he denominator. We
shall henceforth write them in thiswdy. For convenience in

(a, b) is the fraction +, the fitst component being called the

T .oa., ‘) . .
printing, the fraction ; is also sometfmes written in the form

b ®
a/b. It is usually read as “a ower %', oF 4G IPYITY W &ldo
sometimes read as “‘a divided By 4" but of course division (in
the original scnse) is possible only if b is a factor of a.

One of my earliest @iemhories of mathematics is of a feeling
of being puzzled abotd fractions. I think this may have been
duc to being told\that “a half is something which, when
multiplied by # ‘gives 1", without it being made clear that
there was anysuch “something”. This way of starting a
mathematisgl.8ubject, by laying down certain laws or axioms,
which theebjects of study are assumed to obey, is often used,
particalarly in geometry. It could no doubt be used to introduce
new. number-systems such as fractions, but is apt to give rise

_tondtsense of mystery, Actually the line which we have taken

{htte shows that there nced De no mystery about fractions.
They can just be built up out of the numbers which we are
supposed to know about already.

Even when we have made up a new number-system by
combining familiar numbers in a certain way, it is often felt
that the new numbers are in some sense less ‘“‘real” than the
old oncs, The words “real” and “imaginary” will be mentioned
later in the book as being used in a different, but rather similar,
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sense. Once one of my children, when settled in for the night,
said as a parting remark, “There isn’t a real half of seven, is
there ?” Perhaps she felt that the problem of dividing seven
into two equal parts could only be solved by a sort of fiction.
This is of course true. But if we interpret such problems as
we have done here, there is nothing imaginary about the
solution, 1

The method which we have used, that of solving.an
apparently insoluble problem by re-interpreting it in\térr\ns
of new numbers, will be used again later in other connkgctions.
It is indeed one of the principal sources of progresg'in mathe-
matical ideas. A

Fractions. To distinguish them from theymew numbers,
which we call fractions, the old set are callad\Whole numbers
or integers. Thus we speak of positive jutegoers and negative
integers, ‘There are also of course {positive and negative
fractions, 2 fraction a/b being negativé if one of « and b is
negative. .

The rules which we have addpted are of course caleulated
tCn mz(tike ffractions 1beh:jw.e a8 we should expect them to.

onsider for example the rile of equality, that (a, b) = {c, d)

if ad = be;wa%f”iﬁg%il’é%?&?d?ﬁ 355 focatifﬁ, that( a/'b): cg-'d if
ad = be. This condjtion’ is satisfied if @ = kc and b = k4,
where k is a pasitive integer. The rule thus asserts that
kcfkd = ¢/d. This 1s just the ordinary rule of “cancelling”, in
which a factetk occursing in the numerator and in the
denominatot\Js removed from both.

N‘CXF:(EMSider the rule of addition, which, in the ordinary
notatx{q‘,tm- that

KA & ¢  ad - b

) 3 + .

&

AN b

\J A simple explanation of this can now be given. By the rule of
- equality a/b is equal to ad/bd, and ¢/d is equal to be/bdd. This
process is kn,?wn as “‘bringing the two fractions to a common
denomipator . The expression “a common denominator” has
passed into ordinary language, with a rather vague meaning of
something common to various people or things. In mathe-

matics it means simply the bd of the above argument. Having
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done this, we add by adding the new numerators, keepmg the
denominator the same. This gives the addition rute. 'The

multiplication rule is
ac

a. %
b d td

The rules for subtraction and division are of courso.‘a_rrzmgcd'
so as to make these processes tho opposiics of addition and

multiplication, They are simply \\\
T : N
a ¢ ad —ix O
—— - S - ( ¢"
Food bd O\
and AN
a ¢ af )
b~ d b AN

It is easily verified that the assgeittive and commutative
laws, dnd so on, extend to fractions] Tl cxample,
S
b 3 d I f ~El’.€ E] . I‘-{I T f‘
Tkeﬁ'asiion ' www.dbraulibrary org.in

Fractions with depgiinator o are usually exchided from
the scheme. Therecis\nothing wrong or inconccivable sbout
them, but their p;}ﬁrties arc rather inconvenient. The sum
or progluct of any.bther fraction with such a fraction also has
df?nommator:o.,\&lso, by the rule of equality, any two fractions
with denor(iigdtor o are equal, and any fraction whatever is
equal t 4lie” fraction o/o. To admit this would be toe much.
For exdmiple, it is true in general that two {ractions, which are
boﬁ\h equal fo @ third fraction, are equal to one another. This

~C4y easily be deduced from the rule of equality. It breaks

N dows, however, if the third fraction is o/o.
fmn'fh:ol;:?é ;;;LI:E ntoalci(; agﬁléf- .thti}‘?aif to exihfde s_uch fractions
Fraction a/p puon @ gether; is, when we refer to a
/b, it is always implied that & is different from o.

S

Numbers in order.

mas'sTehebwhole numlqers are usually thought of, not just en
» but as occurring in a definite order; in fact they are
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visualized as they are usually written down, 1
on. Here 2 is greater than, or beyond 1, 3 is
and 2 lies between 1 and 3.

It is possible to extend these jdeas to the whole set of
fractions.” Consider first fractions in which the numerator
and the denominator are hoth positive. Then we say that a/bs
is less than ¢/d, and write a/b<<c/d, if ad<lbe. Tor example;
1 < % since 3 < 4. This scheme includes the integers, sinee
we identify /1 with the integer a. It is easily verifiedthat,
according to the definition, all fractions, in which the Iyncrator
1s less than the denominator, are less than 15 allAractions in
which the numerator is greater than the denomifidtor but Jess

than twice the denominator, are greater than abuit less than 2,
and so on. O

. a. c (e a c

i - = dnds at 5 << -

Now consider three fractions 5 £f{l 7 such th P
c \

7 Thus ad < be and cf< ;fe. Hence

ad X cf < beNX de
and diﬁdmg}@%%%’ﬁlwiﬁﬁém be, Ilence Zlf: 2 In other
words, if the firgt fract

ction is less than the second, and the
second less than the third, then the first i less than the third,

This is what we meatfs saying that they come in a definjte order.

2, 3, 4, and so
greater than gz,

£
and f?<

Extension to frdetions of algebraical formule,

One ofthe advantages of algebra is that most of the
formuiﬁlc‘rﬁce they have been proved for particular kinds of
numbets® (such ag integers), can be extended automatically
to new kinds of numbers, as soon as these have been invented.

_Congsider for example the factor-formule proved on page 28.
< 'Fhese of course referred to §

Consequently the proof and the
the same, if we interpret the
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integers or fractions. For example a® — 8 = (e—b) (a + b)
if @ =1 and b == }, just as much as if a = 5 and b = 4.

As another example, consider the sums of the arithmetical
and geometrical progressions. It is easily seen that, whether
n is odd or even, the sum of the arithmetical progression
1+ 2 + ...+ n can be written in the form 3n(n + 1). The\
only objection to doing this previously was that we had not
yet attached any meaning to the fraction 4. Of course the'sim
is necessarily an integer; either # or # + 1 is an even dumber,
so that the factor 2 can be divided into one or otherlof them.

Next consider the geometrical progression."ffhe formula
which we obtained for the sum of this was .\

1--a a4, .a = (" — 1%— (@ — 1).

If ¢ is an integer, the right-hand side js0f course an integer,
the division being always possible. Bit*we now see that the
formula is true whether a is an intéger or a fraction. No fresh
proof of this is required; we hdve only to notice that the
proof given in the case when ads an integer works just as well
when a is a fraction. As an esample of the formuyla in this new
sense, we may take . hratfibrary.oten

i@l = (5 ) =)
=(t—m) (1 -3
SO ST~ ol -

Joater in the book we shall make some further extensions
~0f hat we mean by a number. Each time we do this, there
Wil be a corresponding extension of the formulz of algebra;
that is, the content of these formulz will be extended, while
their form remains exactly the same. '
That part of algebra which is known as the theory of
numbers, on the other hand, dees not extend to fractions and
other such numbers. It involves ideas peculiar to integers,
and it would really be better to describe it as the theory of

integers or whole numbers.
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General use of the “fractions” notation.
The notation g or ¢/b has come into common use as a

substitute for @ = b, whether « and b are integers or fraptions;
@ < b means generally a number ¢ such that bc = «. If & and

e . a
b are integers, this is just the fraction B If a and b are themse]vés
(\)
fractions, say]Piz and 2, @ =+ b or a/b is equal to the frattion
n g \

mg/np. Later we shall use the same notation with o”t.liliii"systems
of numbers, ”"\'\’
“n equations for n unknowns.” \

The system of fractions enables us:,p%solvc many more
equations besides those considered above! In the first place,
as we have already seen, the equation’ gx = p, where p and
¢ are any integers, has the solution x = p/g. But this is
also true if p and g are any fraclons, p/g being then inter-
Preted as in the last sections For cxample, the solution of

anili aorg.In
2v =t is ¥ = fg—lmi EE— = E’ In all such cases there
3 5 ¢ 2X5 10 3

is one equation, a;{i one unknown » whose value has to be
found from i,

Next, we ¢ solve systemns in which there are two
equations and*wo unknowns, An example of such a system
which wasJsbluble in integers was mentioned at the end of

the lasgf?fzipter. But now any such system can be solved.
For exdmple, the Ssystem x -+ 2y =1, 1« +¥ =2 has the

Monz—3 ;1. VL DS SO |
Ms;aﬁhrltzon ® o= o pE and the system ;x—[--gy— I, x —-;}’ >
\-lias the solution » — -i—?, ¥ o= ii:: . That these are the solutions
is easily verified, but fo
refer to algehra books,

The general mle ig that # e
solved for » unknowns, but the
and the formula

t the method of obtaining them I must

quations of this form can be
T€ are some exceptional cases,
ate too complicated to be given here.
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I will take an example from Minoan arithmetic,* The
Minoans flourished in Crete in ancient times, Archeaeologists
have found many clay tablets with inscriptions in their lan-
guage. For the most part this has not been deciphered, but some
of the tablets obviously contain arithmetic, apparently accounts
relating to various commodities. On thrce of the tablets| ™
additien sums arc worked out. These sums are as follows 1a

! ¢ \AH
Hiin L TR FLANS
o — - (1 AN
i - 1) e\
i —~e— i L &9
oL — 1141 L o1
oL — AT N
S LI o i L
e —— e
Foal = 14 0 =\ =

It is pretty clear that | j&“ene, — is ten, and 0 is a

hundred. The other symbols;™t, 7 and vé, must be fractions,
SN g AT T rauli rary.org.in

and the problem is to find otit what fractions they are. It has
been conjectured thagmgis % 718 § and % is #. It is casily
seen that this would\miake all three sums right. Actually the
evidence is incomelusive. If L is x, 7 is ¥ and% is &, and we
assume that sHieintegers are correct, the three sums give us
WAy gy 2, 2w +x=x 41, xt+yvtz=3
We havecapparently three equations for three unknowns: but
the third\Equation is merely a consequence of the other two.
if weladd the first two, side to side, we get
~O ¢ +y +2x=wx 42 +3.

\On subtracting x -  from each side, we get the third equation.
Hence the third equation does not constitute independent
evidence, anid the solution is not corapletely determined. For
example, another possible solution is x = Ly=fandy =1
The conjectured values are probably the correct ones, but to
settle the matter definitely still another worked-out sum will
have to be found.

* 1 have to thank Sir John Myres for teaching me this subject.



CHAPTER V
THE USE OF NUMBERS IN GEOMLLURY

Geometry,

THIs is not supposed to be a book about geotnetry. This
subject is to be dealt with in another book in¢the same scries.
But it is impossible to avoid saying sofaething about it.
Numerical ideas and geometrical ideas haye’'been wrapped up
together for thousands of years, and the§”cannot be separated
entirely now. For the Greeks, geomebryavas the primary subject.
A Greek writer pictured a product of two numbers as an area,
and a product of three numbers as a volume. A formula in
which four numbers were multiplied together was offered with
2 slight apalogydesaittitiidefiorgaonrespond to any geometrical
fipure which could be yisualized. :

To-day, books which"de not profess to deal with geometry
are full of geomet:&idﬁﬂ terms. Numbers are often called points,
equations are called curves, and so on. We shall thercfore say
something abeut'this subject. At the same time, we shall try
to make oug\theories about numbers stand on their own feet.
We shall 418¢” geometrical ideas as suggestions how to proceed,
and as Droviding picturesque language, rather than as the real
basis'% our theories.

S&eometry originally meant “land measurement’”. It arises
~(generally from our attempts to give an account of the rigid
\/non-interpenetrating objects with which we are familiar in the
physical world. These objects force themselves on our senses,
but it is not easy to think accurately . about them. It is not
simply that it is difficult to measure them exactly; it is
impossible. Our measuring instruments, and indeed our senses

are coarse-grained. Objects which are-sufficiently close together
become indistinguishable, whatever aids to nature we employ

in trying to separate them for observation, If we try to measure

46
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physical ohjects by dividing them up, we can do so up to a
point; beyond this, they cease to be what they at first appeared.
Divide 2 wooden foot-rule into twelve parts, and each is a
wooden inch. Divide It into 167990 parts and each is . . .
what?

All this makes it very difficult to think in a reasonable\
way about the physical world. Actually we take refuge in
thoughts about ideal systcms which represent the physieal
world to our minds, but which, because they are constiucted
in our thoughts, are not subject to the awkwardness ofiphysical
objects, The name “geometry”” has become transferred to the
study of such ideal systems. Many such systerfs are very
interesting in themselves, quite apart from theguestion whether
they represent anything in physical spaces)

In geometry we consider things which we call “‘points”’,
“lines” and so un. In our mental comstiiction we may say that
a point is anything which has ceftain properties which are
required by the system, withouttapecifying, or indeed being
interested in the question what a point actually is. In this
method of procedure, the guestion wheHhe ORISR EARS
are consistent, i.e. whether there could be anything with the
assigned properties, is.ag>important and sometimes a difficult
one, But there is ar{bther way of thinking of geometry. We
have already Congt}ucted one ideal system, that of numbers,
and we can use'them as the materials out of which to build
our geometrin, 9t we have already agreed about numbers, no
further diffenrlties about existence arise; it is just a question
whether (yinbers have properties which are interesting as a
geometsy. It turns out that this is so.

As'the “points”; the original elements of our geometry,

~Jetake the numbers, namely, the integers and fractions so far

defined. This is reasonable because a “point” is an idealization
“of “a well-defined place”, and a well-defined place is usually
defined e.g. as “five yards along the path from where we are
now”. In fact measurement can hardly be done without
counting,

"The next step consists of describing properties of numbers
by words which originally had a physical significance, and
which therefore establish in our minds a correlation between
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our number-system and our ideas of the physical space which
we intend it to represent,

“Large”, “small”, “near”.

‘The idea of a large number is familiar, but the meaning of
the word “large” depends on the context; 30 is a large scoges
for a side at Rugby football, but not at cricket; 100 is a large
individual score at cricket, but £100 a year is not a large incoine,
and so on. In mathematics, we say that a number &35'large
compared with a number ¢ if b can be divided into a large
number of a’s, with or without remainder. “Layge’” still has
a rather vague sense; but it often refers tosan’ indefinitely

# increasing scale of largeness—ob is large compared with a, ¢ i8

/"

large compared with b, and so on. RN

“Small” is the opposite of “large”; {‘is\sxhall compared with
b if b is large compared with a, O

Transferring our attention to $tactions, we say that the

fraction% is small if ¢ is smaifﬁéompared with 4. '['his still

of course has the ratihgr \g;g%ié sense which is attached to all
these wordgww.dbrau ibraryrg.in

The difference between the fractions ¢ and © is

28 3 b E
a_¢_ad — b5\, . ¢ a e
R A > rX nd we say that A is near to 5 if T

is small. Thi$use of the word “near” confers a geometrical
meaning on'oir fractions. It is not inseparable from them, but I
donot suppose thatanyone actually thinks about fractions without
visualizing them as marks on a ruler or in some geometrical
way\of this kind. Thus for purposes of thought and calculation
wereplace a ruler of unit length by the system of fractions

‘%With @ < b. 'The particles of which the ruler is composed lie '

in a Certain order along it, and so do the fractions lie in 2
certan order. Every particle has other particles very near to

it on each side, and this is also true of the fractions, since
a a 1

 _land & ot a .. .

bRy +ﬂ are very near to i if # is very large. But

of course the ideal system goes beyond the physical system in
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this matter of divisibility; by making » larger and larger we can

make = —~?—j and g + ?—f as near as we like to g#. We may thus

b
say that the ideal system constructed of the fractions is
infinitely fine-grained. As a representation of physical objects
this is perhaps a defect, but a limitation on the fineness of thes,
grain would introduce serious difficulties in calculation, just

N

as 4 limitation on the largeness of numbers would. ()
"N\

Cariesian geometry. Ao

‘I'he system. of geometry in which a point is spetified by
means of a number, or is even identified with the ‘Admber, was
invented by the famous philosopher 2nd{ mathematician &
Descartes. It is known as Cartesian geometgy

We saw above that the fractions co;res}rond to the points

along a ruler. If we think of all the :f>actions %, in which a

may be less than or greater thafy &, or negative, these will
correspond to a ruler extending 't infinity in both directions.
We call this system a onesdimensionalCilstesiahraggomginy.

According to this defibition, the geometry is just the
system of numbers; but'it'is intended to, and does, call up in
our minds a picture,§f)d sort of space, like the spaces of the
physical world. There are problems of two different kinds
about a system of,geomctry; whether just as a system it has
interesting prgperties, and whether it corresponds to anything
in physical gpdce.

One-dihensional Cartesian geometry is not a very exciting
subjecti\znd a one-dimensional physical world would be
rather’ \acking in Interesting features, The Inhabitants
wolld be situated like beads on a wire or trucks on a

{ tditway-line. All ome could do would be to move back-
wards and forwards. The behaviour of one’s next-door
neighbours would be even more important than it is in
ordinary life,

Two-dimensional geometry.
A two-dimensional space is a space such as the floor of
a room. Many people must remember constructing a sort of
I
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two-dimensional world on the nursery floor. The inhabitants
are toys which are only allowed to move by sliding along the
floor, and must not be lifted up. A hollow square of bricks
lying on the floor makes 2 house, which the inhabitants can
only enter or leave by opening a “door”. If this system has
three-dimensional aspects, we agree to ignore them. Tt is true
that we can see down into the “house’ from above, but from
the point of view of the inhabitants we must be regardutas
supernatural beings. If we throw something into the~bose
from above, this must seem to have suddenly appeared inside
a closed room, and must be regarded with hosfor: by the
inhabitants as a supernatural event. R4%

Any place on the floor can be specified By measuring its
distance from one wall, and also its dist nce' from a second
wall making an angle with the first. ‘Thatds, two measurements
are required. I am using the word “digtance” here in a popular
and rather vague sense. Later on thisvword will be given an
official meaning in our theory. But’ it presumably conveys
some idea to the reader, and ¢we' must be content for the
moment to leave it at that. N in

The two miéasutdments - which specify a place on the floor
give us two numbers, sag(dand ¥; that is, the point is specified
by means of a number-pair (¥, ). The numbers x and ¥
are called the co-afdifiates of the point. If we are building
an ideal systemMor ‘geometry, in which points are numbers,
the points of/the system will e the number-pairs (z, ¥).
These number<pairs must not be confused with those  of
Chapter ¥V} for which the bracket notation has now been
abandoned. As we do not want to “add” or “multiply’’ points,
_'chf:-;qs'%re no such rules of operation for these number-
paugs

~OThe system consisting of the number pairs (x, y) is called
4 two-dimensional Cartesian geometry.

Th_:s system is usually represented by a figure drawn on
paper in the following way, A line, called the x-axis, is drawn
across the paper, and another, called the y-axis, is drawn up
and down the paper. These intersect at a point called the
origin, and usually marked O. They are (mentally) extended
indefinitely in both directions, and divide the paper (or plane)
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into four regions called quadrants. The number or point
(2, ¥) is represented by a point on the paper distant x units
to the right of the y-axis (or to the left, if x is negative), and
3 units above the a-axis (or below, if ¥ is negative). 'Thus in
the top right-hand quadrant both x and y are positive.

Q.
Siratght lines. .

I assume that the rcader has learnt something abodtithe
“points” and “straight lines” in Fuclidean geométry. A
geometrical straight line is a mental construct~ivhich is
supposed to represent the straight edges of physical’objects.
In Euclidean geometry, a straight line is reallpdefined by the
properties we assign to it, ¢ .

In the Cartesian system we have identified “point” with
“number”, or “number-pair (x, ¥)”’, if we'dre in two dimensions.
We must now consider what corresponds in this system to a
straight line, WV

Similay ﬁg ures. ° ’ ) www.dbraulibrary.org.in

One of the characteristicdprinciples of Euclidean geometry
is that of similar figures\'Two triangles, for example, arc said
to be similar if their Corresponding sides are proportional and
their corresponding angles are equal,

If ABC and(#/B’C’ are similar triangles, the former being
the smaller, ABC is just a map of 4'B'C’ on a smaller scale.
In fact any, smhall map is usually “similar” to the country of
which it-gla map. Of course in the case of a flat map of the
earth, ths is not strictly accurate, since the earth is round.
The }ltdea of similarity is really an extension to any size of the
properties of scale drawings with which we are familiar,

“\“There are systems of geometry in which similar figures
tn different scales do not exist. For example it can be shown
that on the surface of a sphere there cannot be similar figures
on different scales.

Equation of a straight line.
In the figure p. 52, APQ is a straight line intersecting
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the x-axis at 4. Let P be (%, 3), so that OB = «, and BP = L2
Similarly let Q be (x', y), so that OC = &’ and €O = v

¢

H = & ‘:
0} “A B c
N

In this figure ABP and ACQ are simjla.l’"triang]es, and
consequently corresponding sides will’bs\\proportionai. Thus
BP _ CQOY
AB 4
If O4 is of length 4, them'AB = OB — 04 — v —a,
and similarly AC = x' — gohe above relation is thercfore
equivalent t¢ww.dbraulibvarg.org.in
' N AN
Ja—a g
So if we took asother point R on the line, of co-ordinates
(=", ¥'), we should find that y*//(x’" —a) is also equal to
the above expressions; in other words, ¥/{(x — a) has the same
value for al\points (¥, y) on the line; it is a constant, i.e. it
depends Gnly on the position of the line, and not on the
pamm{i@ pomnt P, O, R, . .. chosen on it.
If'it

r

it"has the value ¢, then

™
N

AN ¥

a \Y o =C
\ s} x —a
or
' ¥ =clx —a).
This relation is known as the equation of the straight line.

It is, as we have seen, determined by the position of the line;

and conversely, if the equation is given, the position of the
line can be found,
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If we think of an equation as something to be solved,
well, we can solve it; ie. if & is given we can determine y
from the equation, or if y is given, we can solve it for x; the
solution 18

Q!

It is easy to write down the equations of some spégial
straight lines. The equation of the x-axis is ¥ = o. A straight
Jine above the x-axis, everywhere at a distance 1 above it, is
4 = 1. "T'hese should be obvious from the definitions.3Another
example is the equation of the straight line whicl' bisects the
angle between the x-axis and the y-axis. Itg ¢Guation is ¥ = x;
this expresscs the fact that any point\on the biscctor is
equidistant from the two axes. R2e :

From the point of view of algebra, the characteristic
feature of the equation of a straight“line is that it does not
contain any squares or products of # and y, but merely constant
multiples of x and y. We express this property by saying that
the equation is finear. The ‘general form, ofid.liREaE.SRAHOD
is v §-my - # == o, where l, m and n are canstaﬁfts. E1%he
constant / which m@ltiblies the variable x is called the
coefficient of x; andlsimilarly # is the cocfficient of y.

A straight lin&Nn our system, must be defined officially
to be what thé above argument suggests. It is the set of all
number-pajsdf, y) such that a linear equation & }-my -H-n=0,
with congtant coefficients /, m, #, is satisfied.

Werniast point out also that two equations such as
x —i—;}z’%"zo, and 2x242y42==0, in which the coefficients and
the gonstant term in one are proportional to those in the other,

. (Ax¢ thought of as corresponding to the same straight line. For

Vthe same value of &, cach of them gives the same value of v,
so that they correspond to the same figure in the diagram.
One often sees statements such as “a straight linc has
length but no breadth”, and people sometimes wonder how
anything can exist which is so lacking in solidity as to have no
breadth at all. Tt is clear of course that such a statement cannot
apply to the “straight lines” of the physical world. A hne
drawn on paper certainly has breadth, and even the boundary
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between two areas of different colours always has a certain
vagueness if we examine it closely enough. In theoretical
geometry, a straight line is just something we think of. In
Cartesian geometry, what we think of is really a number, For
example, one of the straight lines of the Cartesian Plane is
¥ == 1; and in the case of this line what it comes to is simplyz
that any number is exactly equal to 1, or not equal to 1 at alf}
Two numbers are either the szme or different. They may. be
nearly equal, but they do not merge imperceptibly infd one
another. \«

N
74
\

Distance, R4
We want to define something in our system’ of geometry
which corresponds to the ordinary idea of distance in physical
space. In one-dimensional geometry, thefdistance’” between
the “points” represented by the nuwthers x and x’ can be
defined as being their difference, x{"%. This is reasonable,
since if the points coincide the digtance between them should
vanish, while if they differ gredtly it should be large. If we.
do not want JO-iinchun rhiseglinpah meaning to the distance,
We must take it to be ¥’ —%vor x — %', whichever is positive.
In two-dimensional geometry, that is, the geometry of
number-pairs (x, ), ,\\'féz\want to define the distance between
the point P Tepresenited by (x, ), and the point O represented
by (%', ¥'). Consher first the case in which the two 3’s are
the same, so that O is (', ). In this case, following the
suggestion of one-dimensional geometry, it is natural to define
the distancebetween P and O to be ¥ — 2’ or »' — &, which-
ever is positive, If also » = ' then the tWo points are identical,
and t,he distance between them conveniently reduces to o,
_~Similarly if the two points considered are (x, y)and (x, 3'),
owith the same ) the distance between them is defined to
be v — Yy'or ¥ —y, whichever is positive,

. To proceed to the general case, in which x is not equal to
' and y 18 not equal to 3, we have to borrow some ideas
from Euclidean geometry. We shall assume in particular that
the reader knows the famoys theorem of Pythagoras, about

the sides of a right-angled triangle, We do this as a purely

temporary measure, in order tg Suggest some interesting
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formulee. Later it is these formule themselves which will
provide our official definitions.

The theorem of Pythagoras is that the square on the
hypotenuse of a right-angled triangle is equal to the sum of
the squarcs on the other two sides. If POR is such a triangle,
with R as the right angle, this means that PQ? = PR* + OR?,
Now in Cartesian geometry, a straight line joining two points
(x, y) and (%', y), with the same y, is usually thought of as
being at right-angles to one joining two points (x,,4),"and
(%, 4"} with the same x. If P is (x, ¥), ¢ is (x', ¥)and R is
(', 4), then, according to this, PR will be at_fight-angles
to RO. O
If we are to reproduce in our Cartesianfé?stcm Euclid’s
idea of distance and so also Pythagoras’ \{heorem, we must
therefore define the square of the dista'ngg\between the points
P(x, ¥) and Q (x", 3") to be o\

| (8 — 3P + (P3P
This definition applies to any. two points in the plane; for
‘example if ¥' =y, so that Q4coincides with R, it reduces to
(x _ xl)g, as we shouldu e‘xp'ect. www . dbraulibrary.org.in

For the time-being;\we do not define “distance”, but only
“square of distancgl.) The reader may think that this is a
curious way to proceed, but the definition of distance presents
difficulties whi¢hywe are not yet in a position to surmount. If
it makes the {eader fecl any better about this, we could caill
square-of-distance “‘separation” or something of the kind. We
should #hén have defined the separation between two points,
and \i&%relation to the distance (if there is one) must be left
mreig for the moment.

AN
<‘;Paml£el lines.
) In Euclidean geometry, parallel straight lines are straight
lmefs which never meet. We have to see what this corresponds
to in Cartesian geometry. Suppose that the two lines are
represented by the equations

Ie +-my +n=o0and I'x +my +u =0
Then they are parallel if I/ = m/m’, ie. lm' = I'm.



56 THE USE OF NUMBERS IN GEOMETRY
For example,

x+z2v+1=o0oand 3x -6y -2 =0
are parallel.

To prove this, let us suppose that the two lines do meet;
i.e. that there are numbers x and y such that both equations
are true, Then we shall also have

U(ilx +my +n) —{{I's 4-m'y +n) =0, O\

On multiplying out, it is seen that the coefficient of-ahis
zero, and so is the coefficient of y, in view of the selation
Im' = I'm. All that 1s left s I'n — In’ = o. But, if this 13 true,
then /, 7, and #n are proportional to I, m’, and rg\&o that the
two lines are identical. If we exclude this case; the assumption
that the two lines meet leads to a contradict'Qn, and so cannot
be true, AN

We can of course avoid an appeal\to the principles of
Euclidean geometry by taking the relation ln’ = I'm as the
definition of parallelism. This in fict is the most convenient
official definition in a numbefiPeometry. But some such
argument as the above is needed in order to show how the
official definitionvadheaylibrany org.in

$

P4\

Perpendicular lines. ,{ \

71

Perpendicular straight lines are straight lines at right angles.
But what is a right angle?

Practical mén; always knew what a right angle was. It was
the angle of @ hile such that four identical tiles would always
fit togethes lexactly on a flat floor, whichever way round you
took thim: In an ideal system it is, however, not quite so easy
to define a right-angle. :

~Again we shall borrow an idea from Euclid, In Euclid, if
\"“ ™ y PO is perpendicular to 408, 40
B R being equal to OB, then P4 = P5.

Now let AOB be represented by

the equation ix +-my = o, and Jet
) x A be (m— 1), and B(— m, I}. Let
OP be represented by the equation

A I'x 4+ m'y = o, and let P be
(m’,—1}, Then the squared-
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distance PA%is (m' — m)? 4 (I' — 1), and the squared-distance
PBis (m' + m)* + (' + I)2. Written in full, these are E+
12 4+ n? mm’? 20l —2mm’ and 2 + It m® omt 2l
4- 2mm’ respectively, and the difference between them is 440
+ 4mm’, They are cqual if this is zero, or, what comes to the
same thing, if ZI’ -+ mm’ = o.

This can therefore be taken as our official definition of ™
perpendicular lines. For example, 35 + 4y =0 is perpen-
dicular to 4x — 3y = o. If we consider cquations withta
constant term, it is easily seen that this docs not epfer into
the argument; for example, 3¢ + 4y -+ 1 = 0 is perpendicular
to 4x —3¥ + 2 =0, ¢*0

As a particular case, the lines ¥ = o and j)¥ o, i.e., the
“gyes”, are perpendicular, since they corresgend to the values
I=1,m =0, =0, m’ = 1. This doesndt necessarily mean
that the axes must be represented byllimes drawn on paper
at right angles, in the popular sepse/ It is usual and con-
venient to do so, but, if we stick faithfully to our “official”
deﬁlnition, axes drawn in any other way ought to do equally
well, A\

N\ N www.dbraulibrary.org.in
Clireles, 4

In Euclidean geontefry, a circle consists of all those points
which are at the same given distance from a fixed point. In
our system, we dust say that the point P, or (x, ¥), lies on
a circle with Centre C, or (a, b), if the separation or square-
of-distance Bepween P and C is a constant. If the constant is
denoted by E, this means that x and y are connected by the

relat{c\u%f (x —a) +(y — b2 =F.

This‘is the equation of the circle. It corresponds in the
<‘@aﬁ‘te_sian analysis to the circle, in the same way that the
€quations previously considered corresponded to straight
%mes. The constant % corresponds to the square of the radius
in Euclid’s system; the radius itself, like “distance’ is left
undefined for the moment.
There are many other interesting curves in plane geometry
which correspond to simple equations conmecting and y.
For example, the equation y* = x represents a parabola,
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celebrated as the path of a projectile {though this parabola
is lying on its side). The equation x? + 4y* = 1 represents
an ellipse, celebrated as the orbit in which a planet moves
round the sun. The equations x® — 32 =1 and ay =1
represent hyperbolas. All these are the curves which have

been studied since ancient times under the name of conic
sections.

O\
Three-dimensional geameiry. O

Life in three dimensions is perhaps too familiartQ, require
description here. What we have to do is to repiesent by a
mathematical system the space occupied by solidhobjects such
as ourselves. ’

Consider an object in an ordinary rogwm) Its positian‘ can
be specified by stating the point on ¢fHe Hoor which 1t is
vertically above and its height abové(the floor. The point on
the floor is fixed by two measurements from the walls, say
x and y. Let its height above the fleor be 2. Then the position
of the object is specified by the'set of three numbers (x, ¥, 2)-

In solid gr thiesrdimpratpralg@artesian geometry we there-
fore identify a point withnguch a set of three numbers. All the
ideas of two-dimensiogal* Cartesian geometry extend easily to
three-dimensional¢ geemetry. Without geing into details, we
can say that a plane in solid geometry is represented by an
equation of the'\form

\\ Ix +my +nzg=¢
_wher&{é}%h, n and ¢ are constants. The squared-distance
bf:t\gf( two points (¥, v, 2) and (x', y', 2") 1s defined to be
O (6 —a) +(y —3) + (x — 2%
. The equation of a sphere is of the form
(x —a) +-(y —8)? 4 (z —e)* = k.

Naturally much more can happen in three dimensions than in
two, so that three-dimensional or solid geometry is more

exciting, if more complicated than two-dimensional or flat
geometry.
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15 there a fourth dinension?

If it is true that poltergeists can throw solid objects into
closed rooms, presumably they require a fourth dimension in
which to do it. This is a situation with which (as mathe-
maticians) we are perfectly prepared to cope. We have merely
to add a fourth co-ordinate, and identify a point with a set bf
four numbers, say (¥, ¥, 2, w). This provides us with a four-
dimensional Cartestan geometry. It is impossible to visgalize
it, but as a mathematical system it is net much more, difficult
to handle than three-dimensional geometry. In faft“yve can
introduce any number of dimensions in the sapie)way.

There is another way in which four-dimcnsi’c:)}ml geometry
has been used to represent physical space. We can represent
time as a fourth dimension. The “points’™of this geometry
de not correspond to points in space, . But’to point-events. A
point-event is specified by four numbess (%, ¥, z, f), where ¢ is
the time at which the event (supposed instantaneous) oceurs.
Thus (1, 2, 3, 4) would meancthat something happened at
the place (1, 2, 3) at 4 o’clock’ (if ¢ represents the time in
hours), N\ www.dbraulibrary.org.in

It might be supposed\that the association of time with
space in this way would} serve no useful purpose, since time
is usually thought{gf s something of quite a different kind
from space; butjin the formule of relativity this is found not
to be true, andiitis “space-time’’ taken as a whole which the
relativists z;&\}:a'\ys think about.

Q"



CHAPTER V]
IRRATIONAL NUMBERS

Intersections of straight Lnes, circles, etc., O\

WE return now to two-dimensional geometry. In Lydidean
plane geometry, we are specially interested in the Jeifts at
which straight lines and circles interscct or meef. Ve have
to consider what corresponds to “intersection” ar" Cartesian

geometry, s
Consider for example the two straight\lftes represented
by the equations NV
oy =1, 2x —y &g,
It is easily verified that each of these equations s saiisfied

if we take x = 2 and ¥ = 1; that 1§, the point (2, 1) lies on
each line, and is therefore Jheir “point of intersection”.
Another EX‘E}’I&E}% blrsaul ibrary :f?i"g. in
® —2P=T, 2% —y =y,
| s e
which meet at the, m}in’t (é, g) In fact it is easily seen that
any two straightMlines meet in a point, unless the coefficients
of x in the twe’equations are proportional to the coefficients of
¥. Buch equdtions correspond to parallel lines, which, of course,
never megt,

. Now\consider the question of the intersection of a straight
line #nd" a circle. Take for e¢xample the circle with centre at
!;hg. origin and squared-radius 4. {(Naturally the radius, when it

~Isdefined, will be 2.) The squared-distance of the point

A, ) from the “origin” (o, o), is, by definition, #2+ v?; and
for every point on the circle this is equal to the square of
thc? radius, i.e., it is 4. Thus the co-ordinates (%, ¥) of every
pomt on the circle satisfy the relation x? - ¥ = ¢4; in other
words, this is the equation of the circle,

Let us take as our straight line the bisector of the angle
between the axes, which, as we have previously seen, Is

6o
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represented by the equation y = x. This line passes through
the centre of the circle. 1f the mathematics of the situation is
to correspond at all to the way in which we visualize it, or to
the figures which we draw to represent it, the straight line
and the circle certainly ought to intersect.

Now since ¥ = x on the straight line, at a point of inter-,
section we must have x? -- x® =4, le, 2x* =4, so that
%% = 2. It is therefore a question of finding a numbetyx
whose square is 2. Clearly such an x cannot be an infeger,

\

. . a_\ar
and we must suppose that it is a fraction, say b¢‘~We may

suppose this fraction reduced to its lowest tefinds, i.e., that
any factors coinmon to a4 and » have beenténtoved by can-
c;:ll.ing; then @ and & have no common facter. We thus want
gé =z, 1.0, ¢ = 262 \ O
Now 25 is an even number (a mimiber of which z is a factor
is called even, a number of whigh it is not a factor is called
odd). Hence a? must be an evenspumber, and so also @ must be
an even number, since the sguare of anvodd dumBdrischesip
odd. So ¢ has 2 as a faetor, ie., it is of the form z¢, where
¢ 1 another integer. Qf. the other hand, & is an odd number,
because we have supposed that ¢ and & have no common
factor, and so b Qaﬁnot have the factor 2. '

~ Our equatipn.dan now be written as 4¢* = 2b%, and hence,
dividing cacingde by 2,

N zc? = b

~C
BU‘E thisoshows. that 5% is an even number, and so also that &
1s ameven number, _
:\‘:We have thus arrived at a complete contradiction; the
“d¥gument shows in one way that b is an odd number, and in
another way that it is an even number. Something has gone
wrong. The only way back to sanity lies in abandoning the
assumption that the equation x? = 2 has 2 solution, We must
admit that it has not. -
 The result is that, in spite of appearances, the straight
line and the ecircle never meet. Each finds its way through a
gap in the other. The existence of such gaps shows that our
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number-system has grave defects as @ way of representing the
continuous objects or motions of physical spacc.

The whole matter can, of course be put into non-geometrical
language. A number whose square is equal to a given number
is called the square root of the latter. What we have just proved
is that there is no exact square root of 2. Actually there is,
nothing exceptional about 2; 3, 5, 6, 7, 8, and in fact moss
other numbers have not got square roots, RN

Now it is very inconvenient to have to admit that there™s
no squate root of 2. Not only does this lead to\ strange
geometrical situations, but it would mean that.in all sorts
of algebraical problems we should have to distingiish between
different cases, according to whether certaih/numbers had
squate roots or not. Practically speaking,\if 2 has not got a
square root it is necessary to invent oRgy

S J
"

The square root of 2.

We have seen that it is impi}ésible to solve the equation
Q2 b Q)

pr 2 w‘th\,\,ﬁ}&‘?g'ﬁl}%ﬁ‘]r’H}QrQ{DFg,iﬁ however possible to divide
. a . 4

all Iractions pn which ‘e and & are positive, into two classes,
+8 3

. . XN g2

according to whether gﬁ is less than 2 or greater than 2.

Naturally evéry number of the former class will be less than
every numbet of the latter class.

A division of all the numbers (i.e., integers and fractions)
Into WD classes, as in the above case, every number of one
class: being less than every number of the other class, is called
_(&section. The simplest way to attach a meaning to the squar®
{\root of 2 is to define it as being the section defined above. It
would do equally well if we defined it to be the lower class,
i.e,, the class of numbers a/b with a® < 2b% or the corres-
ponding upper class, but there is no reason to prefer one t0
the other. Whether we call it a section or one class or the
other only makes a slight difference to the language to be used,

the situation in any case being substantially the same,
We denote the square root of a number & by y/x. Thus
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for example +/4 = 2. This curious symbol was once an r,
but it has become worn down by constant use.

Naturzally the square root of any positive number can be
defined in the same way as the square root of 2. For example,
the square root of 3 is the section of all numbers /b 1nto
two classes, such that a? < 35% in the lower class, and a? > 352 .
in the upper class, To be quite consistent, we ought even to
define the square root of a number such as 4, which ha{a
square root in the ordinary sense, in this way. The squaré
root of 4 would be the section of all numbers 4/6 ipro two
classes such that a* < 4% in the lower class, and g% i> 4b°
in the upper class; or, what comes to the same( thing, such
that @ < 2b in the lower class, and @ > 2&4h the upper
class. This may scem a very cumbrous way'of getting at
somcthing very simple, but it simpliﬁcs'.%ﬁe logic of the
situation. o\

It must be admitted that we have ot been able to define
V2 in so simple, or it may seem ifi S0 satisfactory a way as,
for example, 1; and it might be thought that, if there are gaps
in the sequence of numbers, it Would bermatie-hdiest-jusigto
say so. Actually the definition which we have given does all
that is required of the définition of a number. Consider for
example the sum of thé two numbers 4/2 and /3. With each
of them there is assetiated a lower class of numbers in the

above way, viz.pthé numbers ;—such that q? << 24%, and the
AS .

numbers %@}B that ¢ <¢ 34% Now form the class of numbers
O
1) [

5 d.’:;T\hese numbers are the lower class of a new “section”,
wliich is /2 + +/3. Similarly v/2 X 4/3 is defined by the

Ction of which the numbers % X % form the lower class.
We_ usually think of +/2 as something having a definite
numerical value; it is given in tables as
1-4142136, .. :
Such “values” are apt to make us suppose that /2 is some-
thing more concrete than a “section”, but this would be a
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delusion. All that the above “value’” means is that the numbers

L od, g 4T (4

100 100 1000

are members of the lower class of the scction defining 2
and that, if we go on far enough with this scquence (whatever

it may be) we shall get as neur as we like to members of the
upper class,

Rational and irrational numbers. N

Tt is convemient to have names by which to distinguish
between the integers and fractions used so fap/Asid numbers
of the new kind which have just been insgoduced. We call
the integers and fractions rational numbefs; and all others
irrational numbers, Thus 2 is rationaly,42 is irrational, Thﬂ
reader must get used to using words, &ith which he 18 familiar
in other connections, as the techjugal terms of mathematics,
of course with different meanings 1t might be clearer if we
put the technical terms in invérted commas and spoke of
“rational"m_&ﬁpggqignﬁ’b’ngi@:&ers; but it is too late to ty
to introduce this conventiont now. We can only ask the reader
to insert inverted cofftmas mentally for himself, wherever
they are appropriaten] hope the reader will agrec at any rat
that “irrational ¥dlutbers are not irrational, in the dictionary
sense of “not in accordance with reason”.

The set¢pfall the rational and irrational numbers form
the complete set of numbers which are required for ordinary
galculgitég}lf It might be thought for one awful moment that,
if we aperated again with irrational numbers in the same Way

aﬁ.}\’é did with rational numbers, we should come upon a new

. \c‘lass of super-irrationals, and so on endlessly. But this is not
~\.80. Nothing fresh emerges from this process. The jrrational
' numbers already defined are the only ones which exist.

Extension of Cartesian geometry to irrational numbers.

The extension of the idea of number to include irrational
numbers leads to a corresponding extension of Cartesian
geometry. Previously, a point in Cartesian two-dimensional
geometry was a sumber-pair (x, y), where x and y were both
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rational, We now consider also as points number-pairs (x, ¥},
where either & or ¥ or both may be irrational,

This enables us to complete our geometry in a very satis-
factory way. For example, in the problem of the intersection
of the straight line y = & with the circle x* + y*= 4, we can
now say that they intersect at the point (v/z, 4/2); they also
intersect at the point {—+/2, —+/2). 'T'his corresponds exactly{
to what we should expect from a figure, in which the straight
line and circle certainly look as if they intersected ind two
points, N\

It is now possible also to define the distance betweén any
two points in Caitesian geometry. In two diméistons, the
distance between the points (x, ¥} and (', y3ds™

Ve =)t + (v — 33N

It is the square root of what we previou Iy.\called the “‘separa-
tion”. For example, the distance bétween the point (1, I)
and the “origin” (o, o) is 4/2. In‘the previous system this
distance did not exist, because it®Wds not a rational number.
The introduction of irrational taumbers ena('ﬁles - Lo make
gencral statements about lerigths and distinces as we Shotld
like to, without concerning ourselves about the nature of their
particular values. ~

In three dimex'émé, the distance between the points
(%, 3, 2) and (x’, 3, TS is of course :

NP +(y — P+ (x — &)
We can evelydefine distance in four or more dimensions in a
sitnilar u\zf?,.

The discovery that irrational numbers are required to make
geometry do what is expected of it was made by the ancient

Gfréeks It is one of their most important contributions to
\mathematics. '

Em‘?nﬂbﬂ of algebra te irrational numbers.

The whole apparatus of algebraical formule extends at
once to irrational numbers. For example, a formula such as
@ — b = (g — b) x (a + b), proved first when « and b are
ntegers, and next when they are fractions, is now seen to be

L
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equally true when one or both of @ and b are irrational. In
fact the rules of operation with irrational numbers are just
the same as those for operations with rational numbers, and
such a formula is simply a consequence of these rules, and
not of the particular nature of the numbers a and &.

As an example of the advantages of the use of irrational
numbers in algebra, let us take the following theorem: e
arithmetical mean of any iwo positive numbers cannot bealess
than their geometrical mean. The arithmetical mean Of two
numbers ¢ and b is §(z + &), and their geometrical meanis v/ab.
Expressed as a formula, the theorem is i(a +8). > v/ab.

The very expression of such a theorem required the use of
irrational numbers; even if ¢ and b are také)to be rational,
v/ab will usually not be rational, so that_the' theorem has no
meaning in the domain of rational nurf;’be’rs, unless a and &
are connected in a special way sothat v/ab is rational. Of
course one can get rid of irrationals)by squaring each side of
the inequality, and replacing it $iy 2(e + 6)*=> @b, This is in
fact what we did in discussig”inequalities in Chapter I11.
We proved. ihedbrthiitbr(ar yfolan>. 4ab for any two positive
Integers @ and b. But now“we can replace @ and b either by
fractions or by irrationdls,"and we can also divide by 4 and take
the square root of eich side. The theorem of the arithmetical
and geometrical Means as we have stated it then follows.

The theorem'stated here, involving two numbers, is only a
particular casg’of a theorem mvolving any number of numbers.
Suppose that we are considering z numbers @, @, .. G
Thf:n theiv arithmetical mean is (@, + ay ++... 4 a)/n, an
their.geometrical mean is the #® root of aa, . .. a, {i.e. the
{lum'ber whose " power is 414, . .. a,). The general theorem
A8 still that the arithmetical mean is not less than the geometrical
“\miean, This is a famous theorem of which several different

groofs are known, but they are too complicated to be given
ere.

Yy 4
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CHAPTER VII
NDICES AND ILOGARITHMS ~

Indices, O)
Wz cxplained in a previous section that a little nGimpber ®
attached to the top right-hand corner of a number.aheans that
it i8 to be “squared”, ie., x* = x X x. Similasly #° means
“x cubed”, i.e., x X & X x; and generally, if #8ig any positive
integer, &” (v to the #™ power) means ®W x X ... X ¥,
where # cqual factors are multiplied togéther. Of course x!
just means x. SO

"The cepression “to the 1™ power?Has passed from mathe-
matics into general use, as meaning ¥'to a very great degree of
mtensity”, or something of thatkind. In mathematics, an #™
power may be very large or wery small. If & is greater than 1,
then x? is greater still, x3.&réater aguitydWAET Yy, e n®
power of & will be very, Jatge, if # is very large. On the other
hand, if x is less thar(’s,” then x? is smaller still, and »™ will
be very small if # isyéry large.

- The only excption to this is the number 1. Obviously
every power of Iyis equal to 1.

The maigidaw governing indices is that, if two powers of a
number gare’multiplied together, the corresponding indices are
to be addad. For example,
oS =(s X)X {(rXrXxa)=2XxXxXxXx=a,
cotresponding to 2 + 3 = g, This is obviously a general rule,

:%hd it can be written in the form

’ XK =

This suggests that it will be useful to give a meaping to
negative indices, e.g., to expressions such as 7% 2% and so
on, If the rule just written down is to remain valid when 7
18 negative, we must have for example

. A% W x % = 2% = &0
By ® we mean “no factors are multiplied”. This must mean 1,
67
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not o; for if we took it to mean o, we should always get o on
multiplying it by anything else. Thus '
Xt a T =1,
] I i} 1
Hence x =2 must mean -, : and generally, of course,x ™ " means e
P

We also use fractional indices. What is meant by expressions
such as 2% 2} and so on? O\

The answer to these questions is again forced on us by the
above law of indices. If it is to remain true when ginand n
are replaced by fractions, we must have for example™y

2k x 2t = 21 — 2 (&
that is, 2¥ must be the square root of 2, or3is /2. We can
use the index } as an alternative notation {0g*the square root.
But in other cases the index notation,igymuch more useful

than the “root” notation, Thus
2t % 2b x ot == 23430 21 =
Le., 2t means the cube root ogtfz’i"and
w%}w?éllﬂjauﬁitﬁsarﬁfﬁggi%f‘_i = 2% =4,
so that 2! means the cube root of the square of 2, or, what
comes to the same thing’the square of the cube root of 2.
It is even I)c:»*.-ss'ﬂ}:isi 1é attach a meaning to expressions such
as 3v% where the index is an irrational number. To do so, we
censider the clagsyof numbers 3*", where a/b is the class of
fractions suehiCthat 4? < 252, "These numbers 3% orm the

lower clasg .4 new section, and it is by means of this section
that the mimber 3v/2 is defined.

Logarithms,

~This celebrated aid to arithmetic was invented by John
=~ @p@lr, a Scottish mathematician (1550-1617), and put into a
N\ practical form by Henry Briggs (1556~1631), first Savilian

professor gf Geometry at Oxford, It depends on the fact, which -
we have just noticed, that if you multiply two powers of a
number &, you add the corresponding indices. Now addition
s usually easier than multiplication. Let us see whether we
can reduce all multiplication to addition.

It is first a question of choosing the number ». For purposes .

X
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of practical calcalation, this is always taken to be 10. Logarithms
to the base of 10 are usually known as Briggian logarithms,
though the advantage of using this base appears to have
occurred independently to Briggs and Napier (see 4 History
of Mathematics by F. Cajori). Actually Napier did not
consciously use any definite base, but obtained his logarithms,
by a geometrical construction, which seers to be substantially

equivalent to the definition of a logarithm by means 4f)an

integral explained later in this book. The idea of defiming a

logarithm as an index only became clear to mathemaficians

at a considerably later period. "

A number such as 100 or 1,000 can be spcéified by the
power to which you have to raise 10 to obtaf)it. Thus 100 is
10%, and 1,000 is 10% This index is called the logarithm of the
number to the base 10. It is denoted by th€ abbreviation log;
thus log 100 = 2, and log 1,000 =.g~Sometimes we want to
remind curselves what number ig\béing used as the base,
and then this written as a suffix:Tog,, 100 = 2.

Now consider a number such*as 2, which is not a power of
10, This cannot be expressed™in the foreherylibhipe o adénan
integer; but it can be expressed in this form by replacing
by a fraction or an irratiohal number. Of course it requires a

r&f mathematics to do this; but Iet us

suppose that it has*been done, and that 2 = 10, Then % is the
logarithm of 2 tgthe base 10, or, as we write it, £ = log, o 2.
The actual valde“of this logarithm is about -301. Values of
logarithims sfich as this are given in books of tables, and the
whole advaiitage of the method depends on the previous
calculatign’of these “log tables”. Another example islog 3 ="477.
'[iheg‘:{-.:‘ values are of course only “correct to three decimal
plages”.
“\“Now suppose that we want to multiply 2 by 3, and that we
6 so by means of logarithms. We have to add the logarithm
of 2 to that of 3; the result is %8, Finally we have to find the
number of which this is the logarithm. This also can be done
by means of the same table, and it is seen that the result is
very nearly equal to 6. :

Naturally the method of logarithms does not show to
advantage in such a simple case as this, in which the result
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15 obvious anyhow. But if we had to multiply together several

numbers, each with a large number of figures, it might save

much time. It must be remembered of course that semcone

has spent a great deal of time in calculating the log tables; but

once this has been done the results can be used over and over
again.

The method of logarithms shows to even greater advantdge
in the calculation of square roots, cube roots, and expressions
of that kind. There is a rather complicated arithmetical method
of finding square roots, but (within the limits of “@ecuracy
given by the tables) the method of logarithms is pfugh simpler.
For more complicated powers it is practically thg bonly method
available. In the case of square roots it\goes as follows.
Suppose that we wish to find the square roptof 3. From a book
of seven-figure log-tables I find that Idg™ = 4771213, Now
the theory shows that log 4/3 is % of Jug%; hence log 4/3 must
be approximately -23856006. Looking“through the same table
for the number of which this igntlic logarithm, I find that it
is somewhere between 17320 @nd 1-7321. At any rate it is clear
that the valuwwfv.@l:g*mlidhmfﬂ&égiiﬂal places is 1-732.

We must explain now(What the particular advantage of the
base 10 is. The abovg'c}lculation could have been carried out .
equally well with afi\iitimber as the base. This was becausc all
the numbers involved were between 1 and 10. Suppose, however,
that we want to™ise the logarithms of numbers outside this
range, say bétween 10 and 100, What, for example, is log 20?
In genera¥free., if the base is not 10) this would require 2
complétely new calculation. But if the base is 10, we have
2 = 1§ Where & =log;2; and 20 =10 X z =10 X 10" == 10° %,
by.the rules of indices. Consequently log 20=k +1=log; 02 +1,
¢ ’“?QH in fact its value is I-301 approximately., A similar argu-
ment applies to any number between 10 and 100. Hence if the
logarithms of all numbers between 1 and 1o have been tabu-
lated, the logarithms of numbers between 1o and 100 can be
found just by adding 1, the decimal part remaining the same.
Next the logarithms of numbers between 100 and 1000 can
be found by adding 2; and in fact the logarithm of any number
whatever can be found in a similar way. '

As another example of the use of logarithms, consider



INDICES AND LOGARITHMS 71

the problem of the number of figures in Eddington’s number
136 X 2 ®7 referred to at the end of Chapter II. From tables
we find that log,, 136 is about 2-13, and that log, 42 1s 30103
to five decimal places. The logarithm of 2257 is 257 times
this, and this is found to be 7736 to two decimal placcs\
Adding, we find that the logarithm of Eddington’s numbek
is approximately 79-5. Now the number whose iogarithm\‘l\m
the base 10 is 79 is 10 7%, i.c. 1 followed by 79 o’s; the numiber
whose logarithm is 80 is 1 followed by 8o os. Eddington’s
number is somewhere between the two, and therefore it is a
number of cighty figures. X
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CHAPTTR VIII

INFINITE SERIES

Sequences, limits.

THERE are many operations of mathematics in which weydive
our attention in succession to one number, thea to afothert,
then to a third number, and so on indefinitcly. In. grdinary
counting, for example, we think of 1, 2, 3, and se nn; where
“and so on” means “it is clear how to procecd i this way

indefinitely”, Such a succession of numbers is ¢alled a sequence,
Other examples are

m\/
1, 0, 1, o, ‘\
104011 R\
3 21 3y 3 v ':~"x
I, %J i'} '3]5) R ‘:;"'
where “ ... " means the same as Sand so on”. More examples

of such sequences will be giveniater.

In most wagesdbieudbREMSESte behaviour of a sequence,
the “and so on’’, that the main interest lies. The above examples
show that there are varjgus different possibilities. "T'he sequence
1,2,3,...g0€8 on i@réasing beyond all bounds; in technical
language, we say ¢hat “it tends to infinity”’. The reader should
not try to analyse this phrase too closely. It means just what
we have said)and no more. It does not imply that there is 2
place “inﬁgity” at which the sequence ultimately arrives. ]

$equence 1, o, 1, 0,.. . is said to oscillate. There 18
nothing \particular to explain about this.

‘The terms of the sequence 1, §, 4, . . . become smaller and

wlsmé;ﬂcr as we go along; and in fact they become indefinitely
Setiall, passing on their way any small boundary which we like
to set up beforehand. Such a sequence is said to “tend to the
limit 6", The number o is not a term of the sequence, but it
is that mumber to which the sequence points unmistakably.
The sequence 1, 4, 4,. ., obviously has the same property.
ere 1s a technical notation for all this. For “tends to”
we d'raw anarrow, —s; “tends to infinity” is written *“—>@ "’
(again o should not be thought of as a number, but merely as

e
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a symbel occurring in this expression). We usually denote a
typical integer by # (# for number). The property of the
sequence 1, 4, i, ... which has just been explained is then
written
I
Yas # > w0, — —» 0"
-

. L1 .
and read “as » tends to infinity, - tends to o, K\
T

. '\

We can of course easily make up sequences with™Mimits
other than o; for example, the sequence #, %, 3, 4. tends
to the [imit z; in technical notation ¢*0

» 7 Q)
as #n —> w, A TR

The relation of all this to the theopy;?}'irrationals is not
made clear by these examples, becauge®all the numbers and
limits concerned happen to be ratiopal. But there is a very
important connection. The sitvation is briefly as follows.
Suppose that we have a sequetice of xyﬁbwilﬂﬁ{‘%t%ibrgﬁ’y% PP
such that each is greater than“the one before, but sucmt at
they do not increase beyond¥all bounds; suppose for example
that we have a fixed ndmber A which is greater than every
number of the sequen€e Then an important theorem says that
the sequence docs tend to a limit; i.e., that there is 2 number
A such that @,—#%4 as #—> . But this theorem depends
entirely on théheory of irrational numbers, The number 4
may be irzafional, and then the theorem would not be true
if “number’” merely meant “rational number”.

Series{ >
" this subject too we think of a number, then think of
~ahother number, and so on, but now at each stage we add the
ew number to the total of those that came before. Suppose,
~ for example, that the numbers concerned are 1, %, 4, ... Then
the operation is indicated by the formula
TR R

ending with the inevitable -t . . ., or “and so on”. This means
that we first take the number 1; then take the number }, al_ld
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form the sum 1 4 }; then take the number { and form the sum
1 + % + 1, and so on. These sums are called the partial sums
of the series. To consider the series amounts to the same thing
as considering the sequence of its partial sums. Of course we
cannot add all the terms of such a series, What we can do is
to think about the sequence of the partial sums. If this scquence,
tends to a limit, the series is said to converge, or to be cong
vergent. Otherwise, it is said to diverge, or to be divergent.
In the case of convergence, the limit to which the,partial
sums of the series tend is called the “sum” of the scries. It
is in this case only that the series taken as a whol& can be
said to have a definite “value”, namely its sung, &
Let us examine the above example a litflo more closely.
A geometrical illustration would probably\belp the reader in
doing this. Thipk of the terms of a s@'r% as measurements
" made along a foot rule, graduated ig~inches. “1” means “one
inch from the end”. “+ "’ meang\*%dd another haif-inch.”
This takes us half-way from the\one-inch mark to the two-
inch mark. “-- }” means “agd¥another quarter-inch”. ‘This
again takes, s, baifzwayrfigirgarhere we were before to the
two-inch mark. And in fattit is easily seen that the addition
of every term of the sQries has precisely the same efect. We
always get half-way(owards 2, without ever getting quite
there. However, the number 2 clearly has a special relation
to this series, ahd in fact it is its sum in the scnse which has
been defined(@bove. The result is expressed by the formula
IO Ak ok T ok T S S
 Theseader who has succeeded in following this argument to
its conclusion has suramed his first infinite series. Or is it the
ﬁr'stg,? seerm to remember learning at quite an early age some-
Ating about recurring decimals. Suppose that I try to express
"“:@l}e_ffac‘iif’f} % as a decimal, I must carry out the operation of
dividing 3 into 1000 . . ; 3 into 1 won't go; 3 into 10 goes 3
thh remainder 13 so again 1 have to divide 3 into 10, and
agam it goes 3 with the remainder 1; and so on indefinitely.
It is natural to write the result of the process in the form
333 ..., but i fact the division never really comes out to

a final result. Of course +333... is nothing more nor less
than the infinite series i
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=1
i

3.3 3_
16 T Too 1000 T

..

and it will be shown later that the sum of this series really
s i

Apparently it is possible to sum an infinite series without,\
knowing it.

The notation which mathematicians use for series 1e\as
follows. We usc Z, the Greek capital sigma or “s”, to-médan
“the sum of” whatever is written after it. Thus 2@ ‘means
“the sum of all numbers such as 7™, belonging to some Specified
¢lass. For example, by . \\

Zn '"‘;
H=1
we should mean the sum of all the integefs from 1 to 4, that
814243 44 =10. As another exdmple, the reader may
verify that 3 "\
X ont ;:h}.
=1 -

In the case of an infinite seried; "

,“the symbol “e” is written
at the top of the . The twy infinite seriey wiishi e have g ust
summed would be written a8

Sy 1
AZ i =2
¢ '\‘ R=1 &
and Q\
- w3 1
\X SIS >

Thesg«ii}o series are cxamples of what are called infinite
gGQmet{kaJ progressions. We have already explained what a
finitg\geometrical progression is; it is a sum of terms in which
eachiterm is the geometrical mean of its two neighbours. If

\‘”tl;le first term is 1, and the next term is &, such a progression

i$ of the form 1 -+ x +.... - 2", Now we can go on adding
such terms indefinitely, and if we do so we obtain the infinite
o
Series I +x a2 + 4% ..., or Za°
A=a0

It is easy to see that such a series can have no meaning
if xis 1 or any larger pumber; for example, if x is 1, it is
simply
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R I S S
The partial sums are 1, 2, 3,... which just go on getting
larger and larger; in other words, the series is divergent.
On the other hand, if x lies between o and 1 we can sum
the series. To do this, we have to consider the behaviour Q{
the “partial sums” 1 - & + ... 4 5! when # is large."¥We
have already obtained a convenient expression for tIliS\‘S@m,

1

namely 2% Now, as we have explained in adrevious
I—x H p « &/

section, the numbers &" which occur in the nufackator here
become smaller and smaller, beyond all small bédnds, when
is increased indefinitely; or, as we say, £ fends to o as #
tends to infinity. The limit of the right-frand side is therefore
simply obtained by omitting this termiyYe., it is

I o

N\

I a8,

»,” I
The sum of the series to infipityis therefure { Dy 0T a3 we

k™

may write it, N
RN\ S 1
www.dh gllgl‘!&l‘al‘_?_l %207;&1.“. L=
A :

We have already l@d'}some examples of this formula, In the
case x = 4§, thg ?brmula gives

1 1
DEA+TE+ ===
"G 1 2
s 1.
In the jease x = T it gives
QO ’
o LIS S 1 I 1o
I S e Ml N I = 3= -
N\ 10 I00 I—5 T Q

~O ‘ )
\ 'This is equivalent to the formula used above for evaluating

the recurring decimal '333 ... (to get it exactly, multiply
throughout by ).

As another example of an infinite serics which can be
summed, consider the series

I I o 1
PR

+ L 4.
12 20
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or as we may write it (to show the rule by which the terms
are formed).

I T I
P —— b e e
Iz T2ax3 T 3x4’ 4><5+
X ’
th f this series is ————~. Now it i e g

38 . it is easily seeq

The ™ term of this series is W 1) Now ¥

from the rule of subtraction of fractions that this is equal:to

I I '\
n ~n -1 Spplying this formula to each of the terms of the

n 7%
series, we sce that the partial sum as far as tht; :’R}‘h term 1is
equal to ~N
I ) S S | 1 1 T
T e B P
M1
2 3 1 4 " Nt

Here all the torms cancel in pairs exCept the first and the
. I
last, 50 that the whole sum is equal\th 1 — T Now when
-
# tends to infinity the term ;EI’I tends to zero. It follows
AP

that the series is convergentand that itsvsugbisutibrary.org.in

Thete is a certain conelusion to which many people who
have studied up to this'point the subject of infinite series
have jumped. Is i&ﬁ\’ot’true that, if the terms of the series
tend to o, the seried is convergent? It seems as if this may
be 50, since thg,addition of small terms makes little difference
to the sum. Adbetually the suggested theorem is false. The

best knowrﬁ\éﬁmmple of this is the series of the reciprocals
of aif tl@?ﬂt’egers,

X I ¥ © I

=N I+ -+-+-+<+....

2N 23 4 5

N/ TO prove that this series is divergent we do not do anything
particular with the first two terms, which are together equal
to 5. Now take the next two terms, 3 and }. The latter is
the smaller, so that we have two terms, neither of which is
less than 1. Their sum is therefore not less than 3. -

Next take the next four terms, L+t 4344 Of this

the Jast is the smallest. Consequently we have four terms,
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none of which is less than 3. Their sum is therefore not fess
than

I
e

ot -

4 %

. 1
At the next stage we take eight terms, each not less than %

and so on and so on. As many times as we like we cangfind a
block of terms to add, the sum of which is not less thaf §+But
if we go on adding $ and } and 1 indefinitely the tetal sum
will increase beyond all bounds., We have thus Proved that
the series which we have been discussing is¢fivergent. .

This proof has some uscful lessons fof“the beginner in
mathematics. It shows, what the reader thay by this time be
ready to grant anyhow, that the truthg~of mathematics are
often not obvious ones. We are ‘éonstantly coming upon
questions which are quite easy to\put, but not at all casy to
answer. It often requires 2 very\ihgenious argument to decide
what the truth is. In this Bies® much of the fascinatior_l of
mathematics, It is ,Eke aps endless game against a skilled
opponent! T S RIS T right move, we win. Once
we have made the riglitumove, we gain some definite piece of
knowledge which ig-ever afterwards in doubt. )

How to think(of the right move is another question. It
is largely a watter of experience. Mathematical technique
consists of theatcumulated bright jdeas of thousands of vears.
Let us exatine our bright idea about the series r |-+ + & +--
to see what“it really amounted to, It was like a gambit in chess,
m ‘ﬁ"h a piece is sacrificed to gain what turns out to be a
Wiimihg advantage of position. We want to prove that the

pattial sums of the series are ultimately very large. We do 1t
(by replacing them by something smaller. T said “4 =} is
) greater than 1 4 1 ="3 Of cqurse we could simply add, and
get 33, which is larger still. The point is that, by simply adding,
we get more and more complicated sums as we go along the
series, until we are finally lost in hopeless arithmetic. But
replacing each block of termg by the same number of terms,
each equal to the last of the block, is something which we can
go on doing endlessly without getting lost. It is 2 winning move.
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History of infinite series.

Infinite series were used by many mathematicians before
they had any clear idea of what we call convergence or
divergence. It may seem surprising that it was possible to do
this; but what the old-time mathematicians were really doing
was to use infinite series as if they were finite sums, and since,
this is often justifiable they usually got the right answer. {n
other cases they cbtained results which seem strange 16 s,
One of Euler's papers contains the formula NS ¢

g W

I X ™
‘+x_2 -i—,)c-+l —|—x+x2+....=.9. :

& 7

N
This is 4 series infinite in both direet ons. ThE “proof” simply
consists of combining the formule

D
¥ -bxt ., = =
I
and « \J
1 I N x
T =2 = N = . .
T x rx-,._:h& x—1

The objection to this is that, while eavhy sibehelérisymudsn is
correct for some value 8f\w, there is no value of x for which
they are both correi;ﬁr}he former is true when x is less than
1, and the latter vilen x is greater than 1.

Some of the, formule used by writers of that time
are not opePt6 such obvious objections. The formula
I—1+41 0 +,.. =4 was used by Leibnitz and John
Bernoullj ’&.d Euler gave 1 ~3 + 5 —% +... =o. These
series Ateinot convergent, according to our definitions. We
mighg! Zall them oscillatory. In the former, for example, the
partidl sums are alternately 1 and o. These numbers have no

~definite limit, but the number % does happen to be their
average value. In modern times methods have been given of
attaching a definite meaning to, or “summing” such series,
according to which the above formulz are actually correct.

Decimals.,
In the above sections we have referred several times to



80 INFINITE SERIES

decimals. We must now put down our ideas on this subject
in a more systematic way. '

In an expression such as 23781, the figures to the left
of the dot, or decimal point, represent an integer, which has
been sufficiently discussed. The first figure to the right of -

L

the dot, here 7, means -i-‘-'é; the next to the right again, herg\

8 I co O

8, means —--; the next, 1, means . - -; and so on, i thére
100 1000 \

are any more figures. Thus the above eLpressisnmeans

8

=+ -« Clearly this is a ratiopglhumber.
100 &

' 1000 K
We call such an expression a finite decinal. We can also
think of infinite decimals, in which the_ sequence of numbers
after the decimal point never termin@s.\ An infinite decimal
may be formed by endlessly repeatifg wne figure, or a block t_}f
figures. Examples are *333 .. . or cTgr4rg ..., 0r 23III...0
which repetition starts after a_cektain point. These are called
recurring decimals. Other infinite decimals (such as those for
T Or €) ar Bhilssrdplyipus way. .
ow aﬁnﬁﬁi&%&%ﬁﬁgjust a particular kind of infinite
series. We have alread§ ‘pointed this out in some simple cases,
and the same thing holds in every case. Also it can be proved
without difficulty “$hat every infinite decimal is a convergent
series, and coriséquently that it has a definite “sum’’. Thus
every decimmal;) finitc or infinite, corresponds to a certan
number, either rational or irrational. There is also 2 simple
rule to ghow which sort of number the sum is. If the decimal
is fipite”or recurring, the sum is rational; otherwise it I8
irrgtional, .
(5Tt can also be proved without much difficulty that the
yeonverse of this theorem is true; every number can be
expressed as a decimal, finite or infinite; and for each
aumber there is only one expression as a decimal, provided
that we agree not to use recurring g. The necessity
of this arises as follows, Consider for example the decimal

9999 . .., whnere the g recurs. This is _equivalent to the
series . .
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.ré__ = ._...9._. - _9 N
; ;
100 1000 | 10000
or to
. I I
._9.._ e I -+ - ﬁ._ R _i._ e .
100 10 100
The sum of the series in brackets has already been foundy
10 9 . 10 1

W —

it is ==, Hence the value of the decimal is =2 A
9 100 9 (0

1 .. e
But 7o can also be expressed as -1, and this is obviqusly a

S !
simpler and more natural way of doing it. THe use of a
- . X

recutring 9 is therefore superfluous and.edn” be ruled
out. ’

'T'he fact that any irrational number canjbe thought of a
a decimal, even if it does end with the Ghevitable “+ ...
gives the irrational numbers a sortyuf oncreteness. We can
operate with these decimals just as\sve do in ordinary finite
arithmetic, and with use the irrationals soon acquire a reality
equal to that of the rationals. %% o )

N www. dbraulibrary.org.in
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How many irrational nuuibers are there?

This must seem af, ﬁr}t a scnseless question, because you can
make up as many Krational numbers as you like; as we say,
there are an infinfty of them. The point is that it is possible to
distinguish bef¥een some kinds of infinite aggregates and
others, Somg.dre, so to speak, more infinite than others, This
may seem @ surprising and even nonsensical statement, but
examplesishow that it can be given a definite meaning.

The ‘standard infinite set is the set of positive integers
142,93, . ., This is the material out of which our whole system

“hds’been built, and it is natural to compare any other infinite
\set with it. Given any other infinite set (say for example,
the set of rational numbers, or the set of irrational numbers)
we ask whether it is possible to number off the members of
this set, so that each member corresponds to just one of the
positive integers, Suppose for example that the set is the
set of even numbers, 2, 4, 0,... In this the typical number

F
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is 2n, and if we make this correspond to the integer n, the
"numbering off”” 1s achieved at once.

A set for which (his can be done is called an enumerable set.

Consider next the sct of all ratienal numbers between o
and 1. These also can be “enumerated”, in the following way.,
Take fivst the number 4, because its denominator, 2, 1s the
smallest possible. Next take the numbers § and £, their denoming
ators being the next smallest, 3, and their numerators runpiog
through the numbers less than 3 in order. As fourth apd\fifth
in the list take the numbers 3 and #, for similar reasons, 3
being omitted since it is equal to . As sixth, sé€venth and
eighth in the list we take %, *, and %, and so on,dugreasing the
denominator by 1 each time, and then takujg #ic numerators
in order of size, omitting fractions already>expressed in a
simpler way. Clearly every fraction ﬁr},d&\a definite place
this list, though it is not quite easy_ td, Write down the place
taken by a given fraction m/n. It’will be noticed, however,
that we do not say “arrange all thefational numbers between
o and 1 in order of magnitudepand count them off in that
order”. This would not wesk, because, if you take any
particular watiorblanlbnbeyO% 185 impossible to fix on any
other one as being th€ next greater. There would always
actually be others inbetween.

We have thus‘shoWwn that the set of the rativnal numbers
between o and™ is enumerable. Now consider the same
problem for all, the numbers between o and 31, both rational
and irratiop@l In the case of the itrational numbers there are
no denominators to start work on, so that the method used
above i$-fot available; and of course an order-of-magnitude
arran ement will not help, any more than it does with the
rational numbers. We are at a loss to know what to do.

~\\ In fact, the problem is insoluble. This is a remarkable
‘result, first proved by the German mathematician Cantor. It
can be proved as follows. Suppose that the desired result had
been achieved, and that all numbers between o and 1 had
been enumerated in a definite way. Since each such number can
be expressed as a decimal, this amounts to an enumeration 0
ail the decimals, For the sake of writing down something
definite, suppose that the first three decimals in the list were
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3427 . .
2981 . ..

‘0446 . . .

to four decimal places. Now the point is that, if we could
make such a list of all the decimals, we could derive from this {
List another decimal, different from every one in the lst.
The first decimal in the list begins «3 .. .. Very well, let(the
proposed new one begin *4 . . . . The second one in the, lis# has
a g 1n the secend place; very well, lot the new one go om™g6 . . ..
The third one has a 4 in the third place; very well/Jet the new
one go on 405 . .. . The rule of operation consistsvof adding r
to the #* figure in the n™ decimal, excepf\that, to avoid a
possible recurring 9, we replace 8 by 7, nasby 9.

The new decimal thus constructed differs in the n™ place
from the #™ decimal in the list, angd¥gd ‘it is different from
every one of them, The assumption’that it is possible to
arrange afl the numbers betweemle and 1 in such a list is
_therefore proved to be false. 3%

'The theorem shows that thewinfiwitglibrefy dmational
numbers is of a different/kind from the “infinity” of rational
numbers. There are in alsénse many more of them. If we can
imagine a situationiﬁ\ii&'hich we could pick out a number at
random from all the humbers between o and 1, it is infinitely
improbable that\lflis number would be rational. This of
course is not™hé same thing as being asked to think of a
number “at’rfidom”. We should presumably think of one of
the mos&f;ﬁvfﬁiliar ones, and it would turn out to be rational.

s’\ .
O ’

O
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N\
The cireumference of a circle. O

SupPosE that we want to meusure the distance mun}c{ a hoop,
barrel or round object of any kind. One way wouldobe' to tie a
string round it, so that the cnds just meet, and then to pull
the string out straight and measure that, Another way would be
to place the hoop on the ground with a_mark on it against a
mark on the ground, and then roll it aléag undl the mark on
the hoop comes down again. 'F'he gii';énce between the two
points on the ground corresponding #o the mark on the hoop
would be the length round the haop. ‘ .
Now consider the problem\of the length of a circle in
Cartesian geometry, To a{_ol&%jgm;-ely ideal cirgle along an
entirely corlce]_:)tmn;flu stralg?flt fine is not so casy. In fact 1t
is not obvious that therdjs any definite number associated with
& circle which can reasanably be called its length. A different
method of approachito this problem is required. What we can
do is to constryttyinside the circle polygons which follow the
line of the citblé round very closely. The length of each side
of a polygon™is naturally taken to be the distance between its
end-paints,“distance having been defined in Chapter V. The
length~gf the perimeter of the polygon is then the sum of the
lengths of its sides. We may then expect that the length of
_the perimeter of the polygon will be an approximation to the
\M‘: length of the circumference of the circle.

B
F E Let us consider a circle of radius 1. In
Cartesian geometry such a circle is repre-
¢ sented by the equation »* 4 y? = 1. First
%
o

of all, inseribe in it a square represented
by ABCD in the figure. The point 4 is
(1, 0) and the point B is {0, 1). The.
length of 4B, ie., the distance between

34

N
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these two points, is 4/2. 'T'he length of the perimeter of the
square is therefore 442

Next we bisect each arc 4B, BC, €D, DA, by points
E, F, G, H. On joining up AE, EB, etc. we obtain a regular
octagon inscribed in the circle. The length of this octagon
can be found, though it does not have such a simple expression™,
as the Iength of the square. The octagon is already a good deal
closer to the circle than the square was. R\,

And so we can proceed, at each stage inserting new_points
on the circle mid-way between the old ones. We obtain regular
inscribed polygons with 16, 32, 64, . ..and genersily 2 sides.
Let us denote the length of the perimeter of thé\pélygon with
2" gides by Z. i

Now T think it is clear from the figure® that each [, is
greater than the one before. This simply' follows from the fact
that the sum of two sides of any trjdbgle is greater than the
third, since what we do in passingXfrom [, to I ,; is to
replace cach side of the polygomof 2" sides by two sides of
that with 2**1 sides. Hence thelnumbers /, form a sequence,
each term of which is greated,than the terppahefars jto, Qm, the
other hand, the numbers 4, do not increase beyond all bounds.
The perimeter of each of the inscribed polygons which we have
used is less than t]%h‘.of the square of which 4, B, C, D are
the mid-points of ﬁ sides. This is fairly obvious from the
figure, and anyHow mathematicians can easily prove it. The
tength of tha\Werimeter of this square is equal to 8, and so
every numberl, is less than 8.

The gequence /, is therefore convergent, and the number
to whielNt converges is defined to be the length of the circum-
ferene of the circle, It is not a question of proving that this

_number is the Iength. It is so by definition—the Iength is not
{ defined in any other way.

Half the length of a circle of radius 1 is 2 number which
is always denoted by the Greek letter = (pi). Thus the limit
of the numbers /, in the above construction is 27 In any
circle, the circumference is proportional to the radius, so
that the circumference of a circle of radins r is equal
to 2mr,

It is obvious from the values of the perimeters of the
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two squares which we drew inside and outside the circle, that
m lies somewhere between 24/2 and 4.

The problem of area.

Possibly the idea of the area of a flat floor arose in connection
with the problem of paving it with square tiles. One would/
want to know how many tiles were needed. Suppose that it
is a rectangular floor, which could be exactly filled up¢with
the tiles. If p of them go into it one way, and ¢ the othéryway,
then the total number required is p X ¢. This nudber has
nothing to do with the shape of the floor—twesfbors of
different shapes with the same » X ¢ are of equal“mportance
from the tiling point of view. This numbei<then deserves a
special name, and it is called the area. The'wvay in which we
have obtained it clearly gives the rule for e area of a rectangle,
area = length x breadth. %)

_ Bven if the length and breadth afe not exact mulitiples
of a unit, as we have so far suppased, the same rule still gives
a definite result, as long as theuleiigth and the breadth can be
measured. This extends the definition of arca to any rectangle.

We next Feq¥ra MPRI ¥R Dhe area of 2 triangle. In
Euclid’s theory of trianflet congruent triangles are regarded
as being equal in all feSpects, so that, if they have areas, the
areas must be equal\Now take any triangle ABC, and fit round
it a rectangle as(in the following figure.

3 P\ D Here AP is perpendicular to
WS BC. The triangles ABP and

ABE are congruent and so of

§~ equal area, Similarly ACP and

ACD are of equal area. Thus

A the triangle ABC must be half

B 5 ¢ the area of the whole rectangle,

: t.e., half of ER x BC, or half -

of AP X BC. Hence we obtain the rule, area of triangle
= half the base multiplied by the height.

Here we are using Euclidean geometry to give us hints as
to how to proceed in certain cases, not as the logical base of
our system. We must therefore really take the above rule as
the definition of the area of a triangle. What the argument

A
¢
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shows is that it is the only definition which is consistent with
our ordinary geometrical ideas.

Later on we shall discuss the problem of area generally.
It has been introduced here in the case of triangles because
we want to discuss circles, and because it is a fairly simple
step from the triangle to the circle, ~

Area of a circle. A

Besides having a perimeter with 2 definite length, @ €ircle
encloses a region with a definite area. This can bé_geen by
using the same construction as before. Take the regular polygon
with 2" sides inscribed in the circle, and Jjoinseaeh’ vertex of
it to the centre of the circle by a straight ling.” This divides
the polygon into 2" triangles. Now the areaof each triangle
is half the base multiplied by the hej % 'Take as the base
of each triangle the side which is on@ of the sides of the
polygon. Then the sum of all the¢bases is the perimeter of
the polygon, and so, when # is @ery large, is approximately
equal to 2nr (if » is the radius). Also the height of each
triangle is approximately 7..Heénce the area enclosed by the
polygon approximates to mx* when wisvndpepakitireonergusntly
the area enclosed by the “circle is equal to 7 2.

The value of 7. N

Approximatigpe o w are to be found in very ancient
writings. In 4n Egyptian papyrus, written by Ahmes some
time before 4700 v.c., and entitled “Directions for obtaining
the Knowledge of all Dark things”, the area of a circle is found
by dedugtifig from the diameter one ninth of its length and
squasifig the remainder (see F. Cajori, 4 History of Mathe-
mafics). If we take the radius to be 1, so that the diameter is
’%jz;md the area m, this gives

2

2
9 9 8

This is equal to 3'1604 ..., a very fair approximation to m.

According to I Kings vii, 23, Hiram of Tyre made a molten
s€a, ten cubits from the one rim to the other; it was round
all about, and z line of thirty cubits did compass it round
about. According to this, the circumference of the “sea” was
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three times ite diameter. If this were quite accurate, = would
be equal to 3. No doubt Hiram, in his report to Solomon
at any rate, ignored fractions of a cubit. If the molten sea was
96 cubits across, it would be about 30 cubits round, to the
nearest cubit. If it was really ten cubits across, it must have
been a good thirty-one cubits round.

o 22 .,
The most celebrated approximation to 7, =—, is due td
7 O\
. . {10
Archimedes. He actually showed that = lics betweefi\3 71
I . . . N 5
and 3 -. A still better rational approximation teyx is I—frg
A
This is equal to 31415029 ..., and it agrees’“\}ith T to six
places of decimals.

The numerical value of = to ﬁfteen‘dpéifnal places is

7 = 314159 26535 8g703 . - .
Tt has been calculated to hundrc‘dé‘,o’f decimal places, with.
what object it is difficult to sayg.e\
There are many striking fexmulze for 7. In 1656, John
Wallis, Saviliae dBrefdsbny e @IBometry at Oxford, proved
that ~

P4\

m_g 202446688
23°3°5°5°7°7°9

- The expression on, the right-hand side is an infinite product;
that is, we ateto”multiply any finite number of factors, and
take the limit)of these “partial products” as the number of
factors tends to infinity, This formula was the first in which
7 was expressed as the limit of a sequence of rational numbers.
Perhaps'the simplest such formula is the infinite series

76 I 13 I
"'\""’ ﬁ:4(1-—"+_.—'—+-|.
) 3 5 7 )
published by Gregory in 1670. Another infinitc series, this
time for =2, is .
w2 = 6(1_ _;__i_ -} I_ L
\E TRt

discovered independently by John Bernoulli and Euler.
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Squaring the crcle.

One type of problem which the ancient Greek geometers
were fond of setting themselves was that of constructing a
length with given properties. For example, they asked how
to construct the side of a square which should be equal in
arca to a given triangle. “Construction” here had a special
meaning, They were only allowed to use ruler and compasses; {
that is, a straight line through two given points could ke
constructed, and a circle with a given centre and radiug ‘ef
a given length could be constructed. Anything clse mdst be
made up by some combination of these processes. One\fnight
imagine the existence of other curves, but as theyPesuld not
be sc easily drawn in practice, it was not regarded as playing
the game to use them in constructions,

The problem of the square equal in areg 10’2 given triangle
was solved. Another problem which tha:(suggeated itseif was
that of constructing a square equal i¥atea to a given circle;
and of course it had to be done by\Euclidean methods, i.e.,
with ruler and compasses only. The problem became known
as that of squaring the circle, ¥t was never solved, and we
know now that it is insoluble, tithe propotedbEsnitaeHdTadun
impossible one. N

Let us see what this&mounts to in terms of numbers. We
may take the radiu the circle to be 1; its area is then =.
The side of the propesed square would therefore have to be
equal to /m. L \)

Bt was prowed’ by the German mathematician Lambert in
1761 that wAsn irrational number. This is a very interesting
discovergkzlﬁrﬁt it does not prove that the problem of squaring
the cirglelis impossible. Some irrational lengths, such as /2,
can be ‘constructed by Euclidean methods. But not every
irational length can be constructed by these methods. They
ead to lengths of a special kind only, and it happens that
V'm is not one of these, It was proved by another German
mathematician, Lindemann, in 1882, that 7 is not merely
irrational, but is what is called 2 éranscendental number. This
means that it is not a root of any algebraic equation with
mteger coeflicients. Since every number which can be con-
structed by Euclidean methods is a root of such an equation,
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neither « nor v/ can be so constructed. Hence it is impossible
to square the circle.

This of course does not mean that the proposed square
does not exist. In fact we have shown above that it does. It
merely means that it is impossible to construct it in the
particular way used by the Greek geometers.

The three unsolved problems of antiquity. O\

There were three famous problems which were proposed
by the ancient geometers, but which were never solved, One
was that of squaring the circle. The second was that Oftrisecting
a given angle, ie., dividing a given angle mto)three equal
parts. ‘The third was that of duplicating a cubeghe., to construct
2 cube which should have twice the volunteNf a given cube.
All the constructions, of course, had to he.done by Euclidean
methods. L&

The ancients failed to solve these)problems, not because
they were not clever enough, but,Because the problems them-
selves were insoluble. This is ¢fife in each case for the same
sort of reason, viz,, that thesdglution would involve a kind of
irrational WdmBéF WK 5RWEIP be constructed by Euclidean
methods. Of course, pafticular angles can be trisected. The
trisection of a right~angle involves the construction of an
angle of 30°, whigh tin be done quite easily. But in general
the problem isan impossible one. )

It scerns that'the fame of these problems is world-wide,
but the factythat they are insoluble is not so well known.
There muss be many people toiling pathetically on in garrets,
trying\to’ solve them still. Circle-squarcrs, and particularly
anglé-trisectors, still exist. They send me their solations
softetimes. Often the nature of the problem has been mis-

~Junderstood, and it is thought that 2 good approximation to the
’solution is what is wanted. Usually the constructions proposed
are so intricate that anyone might have gonc wrong in the
course of making them up. I must admit that I never try to
hunt out the mistakes in these complicated figurcs. But I can
assure the circle-squarers, angle-trisectors and cube-duplicators
that there is general agreement among mathematicians that
they have set themselves an impossible task.
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The number e,
An expression which occurs in many mathematical formulz

is the product of all integers up to and including a given

integer. If the last integer is #, this product is called “factorial

#”, and 18 written n! (In the older books it used to be written

in, but the line under the letter made this inconvenient to ™\

print.) Thus

N

nl=1X2 X3 X...xXn )

For example 1! =1, 21 = 2, 3l = 6 and 4! = 24, O ‘
The puraber ¢ is defined to be one plus the sum\of the

reciprocals of all the factorials. In symbols o\

or \\

1\

When we say “the sum of the reciprocals of all the factorials”
we are of course speaking of theé\sum of an infinite series; e
is not to be found just by addition, but I:b is l}e limit of a
sequence in the sense explained in @HE@%’ i3 E‘Vil T3 8itide'%)
increases very rapidly @8\» increases, 1/n! decreases very
rapidly, and the rcadef ¢in well imagine that the series just
written down. is com¥ergent. This can be proved to be true,
so that e is actually)defined by the series. Numerical approxi-
mations to ¢ caricbe found by taking the first few terms of the
serics and ignoring the remainder. An approximate value with
fifteen dect 'r;h places is ¢ = 2-71828 18284 59045.... '

Wh; Q\h'e number e is important in mathematics I hope to
explaid Mater. Here I shall only go as far as proving the
following theorem: e is an irrational number.

{ NI general, if 2 number is defined by a formula, for example
a¥ the sum of an infinite series, it is difficult to determine
whether it is rational or irrational. 'The particular nature of
the series which defines ¢ makes it fairly easy to obtain the
result in this case. The proof proceeds by reductio ad absurdum.
That is, we assume for the sake of argument that the contrary
of the proposed theorem is true, and show that the assumption
leads to an absurdity or contradiction,
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Suppose that ¢ is a rational number; that is, that there
are integers p and g such that ¢ = p/g. Thus

I I

E = T ‘.I’_ _ = - F

q 3

Divide the series into two parts, the sum of the terms as far,

as 1/¢! in the first part, and the remainder in the second part}
thus RN

P 1y | 1 L1 ‘__s\ '
A (RHERE ) (it 5y )

Now multiply throughout by ¢!, In doing so, weltfeat the above
expression as if it were a finite sum, and not\an infinite series
but it can be shown that in the case of\z} convergent series
this is quite justifiable. The result is O

R

1!l 2l REREE

! D
— ' — t __g.-. ,_1.’?:"_'_“_ R |
2 X (g— D! =(g! + &3 -g - 1)
s 3_~“ ok e
¢+ 1 [gabthiBrErpbrg.ie + 1) (@ +2) (g +3)
The left-hand side is gléarly an integer, and so is every term
in the first bracket onthe right-hand side. Hence the sum of
the remaining tefms™{s equal to the difference between two
integers, This hewever is impossible; for the sum in question
is clearly less thian the corresponding sum in which each factor
in each dendwtinator is replaced by g -+ 1; and this is

$
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o
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+
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g+ 1 \1+ (¢ + 1) +(9+1)2‘ T J

The series in the bracket is simply an infinite geometrical
progression, and its sum is

I g1

; _q
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Hence the whole expression is equal to 1/g. The corresponding
sum in the previous expression has therefore been proved on
the one hand to be equal to an integer, and on the other hand
to be less than 1/¢; and this is a contradiction if g is greater
than 1. The assumption that e is equal to a rational number
27y is therefore false.

This is one of the simplest cases in which a number defined {
by such a formula can be proved to be irrational. The proof
that m is irrational is considerably more difhicult. RV,

A proof that the number = is transcendental, and éonse-
quently that it is impossible to “square the circle” 4§ given
by Hobson, Plane Trigonometry, 4th Edn., pages 3045311, The
first step in this proof consists of proving thatthe number ¢
is transcendental. Anyone who had merely readvthis chapter
might not suspect that there was any comnection between
the number ¢ and the number 7. But t{c:r is a connection,
expressed by the formula ¢ = —1. This formula anticipates
several things that will be dealt with later in the book. 'The
meaning of 7 is explained in Chapter X; #™ means the
exponential serics defined in Chiapter, XITL, with, the variable
replaced by 7. It is beyond the scope of this )OGE to corfsider
series involving 7, but theshcory of such series can be found
in many other books. . & :

Proofs that = andt'esare transcendental are also given by
Hardy and W l‘ighti%}n Introduction to the Theory of Numbers,
Chapter XI. .0

All this seems very remote from the original geometrical
figure whichpgave rise to the problem of squaring the cixcle.
It is nons{ipprising that more than two thousand years should
have e.l;&e"d between the time when this problem was proposed,
and the time when it was proved to be insoluble.

L.(Broofs of the impossibility of trisecting the angle and
Qﬁ;p“!icating the cube are given by Courant and Robbins, What
5 Mathematies? (Oxford University Press, 1941), pp., 134-138.
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CHAPTER X
THE SQUARE ROOT OF MINUS ONEA,

Quadratic equations, .\:\'
As an introduction to this subject we shall firsg"ghake a
few remarks about quadratic equations. A quadratic -€quation
is one which involves an unknown x, and alsg.fthe square of
%, but no cubes or any higher powers, Such 40r example are
the equations \¥%

2 — 1 =0, {1)
¥ — 4% + 3 =.C3\,.\ ” (2)
2 1o, (3)
2 —4x +G)y=o. (4)

Let us consider what valuesof x satisfy these equations. In
equation \L@W.%L‘%ﬂﬂg}grk@éﬁﬁCh side we obtgin
AN xt =1
~\

Hence x must he¢thé square root of 1. There are two such
square roots, { #nd —1. These therefore are the solutions,
or roots of thé gquation, as they are called, _

The seeohd equation is a little more complicated; but if
we recallfrom the formule of p. 27 that
§ (® —22 == —gx 44

S

)\a.rfig"'see that the equation is equivalent to

(® —2) —1 =0,
Adding 1 to each side gives
(x —2)! =1.

Consequently x — 2 is either 1 or —1, and so x is either
3 or 1. These are the two roots of equation (2). . .
In each of these equations the roots happen to be integers;

o9¢
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but it is easy to make up examples in which the roots are
fractions or irrational numbers.

Now consider equation (3). llere the situation is quite
different. Whatever & is, the square of x is a positive number
{or at least o), and consequently x* ++ 1 cannot be equal to o.
Hence this is an impossible equation; it has no solutions at all.
Equation {4) is also an impossible one, since it is equivalent to

(x —2)f+1=0 K\
For the same reason as before, this has no solutions,.\ N

It might be thought that if some of these equations are
soluble and others insoluble, we must just say sg, and leave
it at that. But it so happens that it is possible.to\construct an
extended system of numbers, in terms of which ‘problems of this
kind are soluble. The situation is similar’fe that which we
encountered before, in considering equaﬁbns such as 2x = 1.
‘T'his is insoluble in terms of integer§)ybut if we interpret it
to mean a relation between the complex numbers (fractions)
considered in Chapter IV, thea\it is soluble. As we have

seen, the extension of the idea, of'numbers which; E[Jégﬂyglﬁ:ps
1§ very important, N

So it is with the equations which we have encountered
here. Some of them gre{iisoluble if they are taken as referring
to the numbers alreddy known. But if we re-interpret them
as referring to a cértain system of complex numbers, then we
find that theyafe soluble. As before, the new system of
numbers whijgh.ds introduced in this way turns out to be very
interestingzand important, These new numbers are of use not
only in g}%\theory of quadratic equations, which we have taken
as a simiple example, but in many other branches of mathematics
as yrel
Complex numbers.

Again we consider a system of complex numbers, each of
which has two components, say x and y. We denote such a
number by (%, y). We can begin by incorporating all the
generalizations of numbers which have been made so far,
Each of the two numbers x and y may be given any value,

integral, fractional, or irrational,

\

Q"
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The nature of this system of numbers now depends on the
circumstances in which we regard two such numbers as equal,
and on the laws of addition and multiplication which we’
impose upon them.

We say that two complex numbers (g, By and (¢, d) are
equal if @ = ¢ and b = d. Nothing could Dbe simpler than
this. ‘

The law of addition is, in this case, the very obvious one

oA
(@8) + (6, d) = (@~ ¢ b +d), N
the two first components being added, and also the two second
components. For subtraction we naturally also haye
N
(@ 8) —(c, d) = (@ — ¢, b "
The law of multiplication is AN

D
(a, b} x (¢, d) = (ac — ba{,.fs{d’ + be).

This is more complicated, and it is difficult to give any @ priort
veason for adopting this particulamlaw. The reason will appear

when we woma BB PUESHRE properties of the resulting
system of numbers. N

Division may be defined as the inverse of muitiplication;
that is (&, &) + (¢, d}’ Yust be a complex number (¥, ¥) such

that ~
s N6 D) % (3 5) = (@ B)
In view of ﬂfié’ {aw of multiplication, this is equivalent to
\\" (ex —dy, ¢y + dx} = (a, b).
Thisg%éans that the two relations

NS cx —dy =a, ¢y +dx = b,
<‘;m'ust hold. It may be verified that this is true if
ac + bd be —ad
=a Y=g

The division law is therefore

(@ 8 _ (ac+bd be — ady
(¢, d) £+ d¥’ .—:T-%:?z)
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Naturally it is assumed in this case that ¢ and d are not both
zers, or the right-hand side would be meaningless (both terms
would be fractions with zero denominater).

This is our system, and we must now ask what it has to
do with the ordinary system of numbers, and also what it has
to do with the solution of quadratic equations. Consider in
the first place the sub-class of these numbers in which the®\
second component is zero, i.e., the class of numbers of the
form (&, o). Two such numbers (, o) and (¢, o) are equal’if
a = ¢; and the laws of addition and multiplication ar€ )

(a, @) +{¢,0) = {a +¢, 0) ~‘
and RS
(a, ©) x (¢, 0} = (ac, 0).

Ny

These are got hy putting & — o and d=6 in the previous
forrmoule. M\

Now these laws are of exactly thevsame form as the laws
of addition and multiplication of, ordinary numbers. In fact
the second component and the brackets can be mentally
omitted. The result is that anymathemagical wpstation i ghich
ordinary numbers @, ¢, . .wappear, could be replaced by an
exactly similar operatiop&with numbers (g, o), (¢, 0), . . . . Since
it is the pattern, and ot what makes the pattern, that matters,
we can to zail inténts and purposes identify {g, o} with a.

Next consider, complex numbers in which the first com-
ponent is zerd? Addition for these goes as before; the rule is

27 @b +od) = (b +ad).

But.t:&;fﬁultiplication we have

'S) (0, 8) % (0, d) ={—bd, o).

Sn the product, it is the second component which is zero.

According to what we have said about such numbers, this is
to be identified with the ordinary number— bd. As particular

cases we have

{0, ) X (o, b) = (— ¥* 0)
and

(0, 1) X (0, 1} = {— 1, o).
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These are remarkably different from the ordinary formule
for squares of numbers, The square of any number in this
systemn iIs in fact negative, not positive.

We see at once that there is no difficulty whatever about
solving the equation % + 1 = o, if we interpret ¥ as a complex
number (a, 8}, 1 as the complex number (1, o), and o as the
complex number (o, 0). We want Q.

(a, by = (0,0) —(1,0) = (—1,0), O\

and a solution is given by the last formula above, vig.;:?l = 0,
b= 1, Hence x = (o, 1). Actually there is =alspng*second
solution, x == (o,~— 1). AN

In this system, then, there arc two squard foots of —1
(really, of course, of (—1, 0) }. The formerXe, 1), is denoted
by 4, and the latter, {0, — 1), by — 4. N

Now consider any cemplex nl.ln‘ibf;,t‘\x (#, v). By the laws of
addition and multiplication Q)

(%3) = (5,9 + (0,5) = (&) '+ (0, ) % (3, 0).

This formyla . makes iR ﬁg,i]:%’ghto dispense with the rather
cumbrous bracket notatig;:ﬁa together. We write simply x
instead of (%, 0), and 7gmstead of (o, 1). Then

O, ) = + .
k™ ‘ ' '

We can now,o}crate with ihese numbers in the same way
as with ordipgsy’ numbers, provided that, if # wvccurs, we
replace it By*<- 1. For example, the law of multiplication
reappeat:s{?t"once; we have
(a, bYX{e, d) = (a + ib) % (¢ + id) = ac -+ aid |- ibe -+ i*bd

o\ = ac —bd +i(ad + be) = (ac — bd, ad - be).

md D Historically, of course, all this was done first the other way
\round. Problems occurred in which the formule required that
— 1 should have a square root. Very well then, mathematicians
said, in spite of everything, let us pretend that it zas a square:
root. It might have been expected that this would lead to
one absurdity after another, but in fact it did not. If we denote

the fictitious square root of — 1 by 7, and replace 72 wherever

it occurs by — 1, we get a reasonable system of algebra; In
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fact of course just the algebra which we have made up out of
the complex numbers with two components.

It is of some importance to present the theory in the way
which has been taken here, because even to-day many people
suppose that there is something mysterious about the square
root of minus one. This 1s entirely due to the historical develop-¢
ment of the subject. I do not see how anyone can find anything
sinister or contradictory about the number-pair {o, 1}. {\J)

If one overheard an argument between two people, thefirst
of whom said that— 1 had a square root, while the othey main-
tained that it had not, one would probably have to sag,¥You are
both right, but you are talking about different things. The old
original — 1 has no square root, in the systemn’ to which it
naturally belongs, but if you attach the same name to the
number-pair {(—1, ©), then it certainly }%}l square root, and
in fact it has got two of them. They(@re (o, 1) and (0, — 1),
familiarly known as ¢ and — 47 () _

I met a man recently who.‘ft{‘)ld me that, so far from
believing in the square root of\minus one, he did not even
believe in minus one. This is\at any.rate abzensibter) atifude.

There are certeinly many people who regard 4/2 as some-
thing perfectly obvioug{but jib at v/{(—1). This is because
they think they can vigdalize the former as something in physical
space, but not the %cr. Actually 4+/(—1) is 2 much simpler
concept. QO

The air ch¥bystery about the subject has been preserved
by some unfertunate names which have been used in it.
Numbers(of the form (x, ©), regarded as equivalent to the
ordinagy)w, have been called “real”, while numbers of the
form{e; y), or iy, have been called “imaginary”. Thus x gy
Js¢the sam of “real” and “imaginary” parts. 'The ordinary

{meaning of these words does not correspond to anything in
the nature of the numbers so described.

Anyone who had an insuperable objection to the use of the
complex numbers of this system could actually prove without
them everything that can be proved with them. For every
relation between complex numbers is simply equivalent to
two relations between real numbers. Suppose for example
we are confronted with the relation z = #?, where ¥ and @
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are complex numbers, say z = (x, y) =2 + iy, and w =
{u, ) = u + iv. Now by the law of multiplication

w* = (4, v) X (1, ) = (4* — 2%, 2um).

It follows that » = 4® — 92 and y = 2uv. These two relations
between “real” numbers are equivalent to the relation &=g?
between complex numbers, R\
This process is known as “equating real and imagindry
parts”. It is sometimes nccessary, of course, but, dften it
would not only double the labour of calculation{bdt would

obscure the whole point of formul containing thése numbers.

The Argand diagram. O

Complex numbers are often represehted by points in a
plane, the number (#, ¥) corresponding to the point (x, ¥} in
two-dimensional Cartesian geomefry. This representation is
known as the Argand diagram, «3 o

In this way of looking atf, addition and multiplication
have fairly \ﬁlﬂ‘é}é?a ]??Qg;gg&; i}, meanings, The sum z -3
corresponds to the fousth"Verfex of the parallelogram, three
of whose vertices are £he points O, z and 2’. Multiplication
is not quite so simplé, Suppose that the point 2 is at a distance
v from O, and that.the line joining & to O makes an angle 4
with the axis ,of: ». Similarly let 2" be at distance 7’ from O,
and let thexlife joining 2’ to O make an angle B with the
axis of x¢fFhen the product zz' corresponds to a point at a
distance™sr’ from O, and such that the line joining it to O
makésxﬁ angle 4 + B with the axis of x. The reader s}}ould
draw 'a figure to show this. The proof requires a little trigon-

. Ometry, so that we cannot give it here.

Solution of algebraic equations in terms of complex numbers.

The two quadratic equations which, on page 95, we had
to leave as insoluble were #% 4+ 1 = o and ¥* — 4% + 5 = O.
If we interpret these in terms of complex numbers, the roots
pf the former are 7 and —-1, a8 we have just seen. The latter
1s equivalent to

(# —2): = —1.
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Hence x —2 = ior —i, and the roots are ¥ = 2 ¢ and
¥==2 =L

It can easily be shown that any quadratic equation can be
solved, if it is interpreted in this way.

Tt might be supposed that to solve equations of higher order
we should require complex numbers of still more complicated
kinds; for example that a cubic, or equation involving &%
would involve a second set, 2 quartic, or equation involvinglx,
a third set, and so on. This is a mathematician’s nightmaarg,
which turns out to have no foundation in fact, An important
theorem, sometimes called the fundamental theorernyof algebra,
says that any algebraic equation has a solution, if itignterpreted
in terms of the system of complex numbers alfeady introduced.
The proof of this theorem is difficult, and\jt,Js impossible to
give any idea of it here. The effect of it{and other similar
theorems) is that this system of complex numbers is, in a
whole class of problems, all that is {vanted. We have to make
this generalization of the idea ofyumber, but, once we have
got it, we do not need anything&lse.

There are, of course, ‘m-.g’ny oghsg,_gggggqqgmq.f Lom lex
numbers, In one such systent; called quaternions, ea nfimber
has four components. Afiother syster has recently been used
by Eddington in develeping his theory of the universe, In
Eddington’s system {there are no fewer than sixteen square
roots of minus oé: This system was used by Eddington, not
at all for fury bt because it appeared to be the best method
of representing certain aspects of the physical world.

" \Y .
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CHAPTER XI

TRIGONOMETRY \
(N
TRIGONOMETRY is mostly about mcasuring triangle§ )1t is
an art whereby, if certain parts of a triangle are known, the
others can be calculated. A triangle has three sidés and three
angles. Let us denote the sides by 4, b, and ¢yand the angles
opposite to them by 4, B, and C. ’

If the,.depgths of all the
sides ang ’)known, then the
shape™ol the triangle is fixed,
and %ie angles can be deter-
mined. Again, suppose that

¢ ~two sides, say ¢ and 4, and
www.cﬁ':raulibrary_brgnm angle € included between
thf:m, are given, Then again the triangle is fixed, and the
third side ¢ and thelother two angles 4 and B can be
found. Still anoth r'\isa’se is that in which one side, say 4,
and the two angle,sc\B and C at its ends are given. "T'hen again
the triangle is fised, and the other two sides & and ¢, and the
third angle M %¢an be found. This process of finding the
remaining garts from those which are known is called solving

the triapgle.”

Tgi%ometry has applications well known to surveyors
and men who map out the world. Suppose for example that
JthiéMline BC is measured out on land, and that A is a point at
the same level which we can see in the distance. Let us stand
at B and measure the angle there, and then at € and measure
the angle there. Then the triangle can be solved, and so the
distance of 4 from either B or € can be found.

In another case, 4 is a distant mountain top. Suppose.
that the horizontal distance a of the mountain from an observer
at B is known, and the angle B through which we have to
raise our eyes to look at 4 can be measured. The angle at

102
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C is also known (it is a right-
angle). Ilence the triangle
can be solved, and the height
b of the mountain can be
found.

If we can suppose that the

103

C.

[+3

familiar geometry of objects on
earth is true also for those which we see out in space, these
methods can also be used to find the distance of the heavenly
bodies, BC can be a base-line measured on the eargh, or
even the distance between a point on the earthjlat two
different places in its orbit. The distance of a heayenly body

A can then be determined by observation of thel
and C. \

{dngles at B

Reader, do not despise these studies. \’I}hey golaced the
youth of Wordsworth’s “Wanderer”.* \‘\

*

Lore of a differendykind
The annual savings of a towsome life
His stepfather supplicd; books that explain
The purer elements of dxith inosl
In lines and numbess, and by charm severe
(Especially perceibed where nature droops
And fecling is¢Suppress'd) preserve the mind
Busy in solitude and poverty.
These occipations oftentimes decerved
The Iistléss hours, while in the hollow vale
Hollptand green, he lay on the green turf
# “pensive idleness. What could he do
¢ With blind endeavours, in that Ionesame life,

\ \\Thus thirsting daily? Yet still uppermost
AN

\ 3

Nature was at his heart as if he feli—
Though vet he hnew not how—a wasting power
In all things which from her sweet influence
Might tend to wean him. Therefore with her lines,
Her forms, and with the spirit of her Jorms,
He clothed the nakedness of austere truth,
While yet he linger'd in the vudiments

* The Escursion, Bk I.

éyﬂaulibrary.org.in
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Of science, and among her simplest laws,
His triangles—they were the stars of heaven,
The silent stars| Oft did he take delight

To measure th* altitude of some tall crag
That is the eagle's birthplace, or some peak
Familiar with forgotten years, that shews
Inscribed, as with the silence of the thought,

Upon its bleak and visionary sides O\

The history of many a winter storm, \

Or obscure records of the path of fire, A
How to measure an angle. A

We have spoken above of measuring the\sides and angles
of a triangle. According to the system of\gedmetry which we
have explained, the vertices of a triarigle are points in the
Cartesian plane defined by co-ording#3){x, y), and the distance
between two of them (x, ») and {3, ¥ is defined by the

formula,/ :(.x — a4y — y.’)?}.' given before. We have not

yet said Wh%j?,_f&ﬁm}l fyFRg&FUtiRg an angle, and this problem
e N\

must now be faced.

Suppose that the vetfex of the angle is made the centre
of a circle of radius¢'n> Then a measure of the size of the
angle is the lengthdf the part of the circle lying between the
arms of the angle, That this length exists can be proved in
the sillme way @5 was used to prove that the whole circle has a
length.

"The ,ﬂ}{e}éﬁre assigned to an angle in this way is called its
circulahmeasure, The circular measure of a complete turn
(e.g.,facing north round to facing north again) is the whole
cirelmference of the circle, and so it is equal to 2w The

~Gireular measure of a right angle is a quarter of that of a

complete turn, and so is r. At any rate, it is fairly obvious
that this is the measure of the angle in the Cartesian plane
between any of the axes of co-ordinates and the next one
round beyond it. We defined perpendicular lines in general
a8 two lines Ir +my =0 and l'x + m’y = o such that
' + mm' = o, and strictly speaking we ought to prove that
the circular measure of the angle between any two such lines
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is 17 This is not difficult to do, and we shall assume here that
all such results, invelving the direction in which the angle
sticks out, are correct.

There are a few other angles of which the circular measure
can easily be written down. It is known that the angles of
any triangle together make up two right angles, t.e., an
angle of circular measure m. The angle of an equilateral
triangle must be one-third of this, and so its circular meagure

is im. e
"T'he unit of circular measure is known as a radian; that 1s,
a radian is an angle such that the length of the arciefia circle
of radius 1 drawn across it is also equal to 1. 7

The traditional way of measuring an angle issatlier different
from this. It originated with the Babyloniars\yvho counted in
the scale of sixty, and consequently fuuné\pn&sixtieth to be
a specially convenient fraction. According'to this system, the
whole circle is divided up into 360 f;qi:g parts, and the angle
subtended by each part at the centtd is called a degree. One
sixtieth part of a degrec is called. Aminute, and one sixtieth part

of a minute is called a second(de., secongl—sixté%:hﬁ)l. Thus the
o\ T T, bl'aUl T 'y.OT‘g.]]’l

circular measure of a degree is 180’ that of a mnute Is

w A
10800° and that of {‘s,econd is fgoo' An angle of 7 degrees,

6 minutes and pseconds, for example, s written 4° 6" 5.
'The difficulty’about this is, how to divide a circle into
360 equal panss, if we have not already defined the measure of
an angle in>some other way? It can be done of course,” by
method$\of repeated bisection and approximation, but this
corr}es\:o much the same thing as the definition by means of
cireular measure already used.
~\\J Apparently the construction of a single degree by Euclidean
methods (ruler and compasses) is not possible. The problem
is the same as that of constructing a regular polygon of 360
sides, since there are 360 degrees in a complete turn. Since
there is a simple Euclidean method of bisecting any angle, it
would be sufficient to begin by constructing a regular polygon
of 45 sides; for we could then use the bisection method three
times to construct in turn polygons of go, 180 and 360 sides.

N\
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to OQ), so that they never meet, and the point T does not
exist, Since the length PT jncreases bzyond all bounds in this
process, we express the result in the picturesque phrase “the
tangent of a right angle is infinite”.

Another way of measuring the angle B is by means of the
length of the line PQ. This is called the sine of the angle, and\
is written sin § (but sin is pronounced sine). The sineN§
another trigonometrical 1atio, and is an alternative way)of
measuting an angle. Some examples of the sines of angles are:

N

. . , N

sin 30% =,
T

: I O

ain 450 -_'—...\?-, 7

VAP
sin 6o = L
sin go® =\J1

Still another way of meadwring the angle 0 is by means of
the length O dbhaslibaijedrglio secant, and is written sec .

The ratios 1/tan 6,3/sin 0, and 1/sec 0 are called the
cotangent, cosine and{cesecant of the angle, and are written
cot 8, cos B, and cc@eé f.

Naturally all “hese ways of measuring the angle 0 are
related, If ABCris a triangle with a right-angle at B, and
the angle at\is 1), then sin 6§ — BC/AC, cos § — AB/AC,
and tan M= BC/AR. Consequently tan 0 = sin 8/cos 9.
Anotlg‘\important relation is

N\ sin® 8 4 cos? O = 1.

. Hefe sin? 6 means sin 0 x sin 9, ie., the square of sin 9
Asin 62 would mean the sine of the square of 8, which would
be quite different); and similarly cos? § means cos 8 x cos 0.
The relation is equivalent to

B(z ABz.
A T gE= b
oy

BC* 4 AB® = A,
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This is true by Pythagoras’ theorem (or of course in Cartesian
geometry by the definition of distance).

Trigonometry books are full of formule relating the sides
and angles of a triangle, Here we can mention two of the simplest
only. Suppose that we have a triangle ABC. Let the lengths
of the sides opposite to the vertices 4, B, C, be 4, b, and ¢,
respectively, and suppose the three angles measured by their
sines, sin A, sin B, and sin €. Then the sine of the tht'ee
angles are proportlonal to the length of the 0pp051te sldes
in formulze Y

sin A sin B sm C

7

a b c AN

'his is a pleasing and elegant result which should appeal to
anyone with an eye for a nice formula.sApart from this, it
happens to be useful. Suppose that we }mmv the length of the
side a of the triangle, and the meagures of the angles B and
C. Then since the angles of a tnangle add up to two right angles,
we can at once determine thesangle 4. We can therefore
find the values of sin 4, sin Bpand sin & and 4hienr-the engths
b and ¢ of the other two s1des ‘can be found from the formula.
In fact they are

b — S_in.&B\ .*:—aSin c
=% A’ T A

This is Just vshat we need to determine the distance of an
inaccessible (Polnt, if we can measure out a base line, and
get the bedrings of the point from each end of the base line.
As another example of the solution of a triangle, suppose
that gk are given the lengths of the three sides, @, &, and ¢,
T heﬁ it is required to find the angles, 4, B, and C. The
fp:mula actually determines the cosines of these angles. It is

bz _+_ 6'2 _ aﬁ
2be
with similar formule for cos B and cos C. Having determined

the cosines, the angles can be found, e.g., in degrees, minutes

and seconds. _
As another example of the use of trigonometry, suppose

cos A =
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that we wish to mcasure the altitude of a tall crag, whose altitude
and distance from us are both unknown.

O\
We can measure its elevation 0 from the point wheréeve
stand. Now walk towards it a distance 4. The elevation will
now be greater; call it 0°. We are now at an unkndwn distance
x from a point on the same level as the observer, vertically
below the top, However, the various parts¥ob the figure are
connected by the formule

d + >

X C&7 vy %
cot B = T ..".'}COt ] =z
On subtracting we obtain o\

dbralilibrary oghin
AT r}?E 1:1Caé‘gi %Eg—lncot g’
Since d, 0 and @' aré known, and the cotangents can be
calculated, the valygof'% can be found from this formula.

™
Trigonometrical ¢.ﬁ\5‘les.

In the prexious section, we have made statements such as
“An angle(4 s known; therefore its sine can be determined”.
How is this to be done ? The answer usually is, by getting some-

one ﬁe ‘to do the work. In othet words, we quote the value

printed in a table,

..\3 "Here is a small specimen taken out of a table of sines.
.130" 50000 | *50252 ‘ ‘50503 ‘ °5o754 51004 {'51254
I_sx"' 51504 | 51753 | 32002 | ‘52250 | 52498 52745
1}32“' 52992 | 53238 !| 53484 \ "53730 | 53975 | 54729
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The numbers 3o, 31, 32, on the left-hand side are angles
measured in degrees. Those along the top are minutes (one
sixtieth of a degree). The entries in the table are the valucs
of the sines of the angles, so that for example the second
entry from the left in the top row, -50252, is the value of the
sinc of the angle of 30° 10" {thirty degrees and ten minutes).
These values are of course not exact. They are the best we(
can do with only five decimal places at our disposal; that js,
we write down the rational number with denominator 10edo8
which is nearest to the actual value of the sine. The complete
table runs from o° to go®, It is quite a simple and crude-table.
Many more accurate ones exist, both as regards thes number
of decimal places used and the closeness betweefi, the entries,
which here is 10" \Y

How did the man who made the table caleuldte these values?
'T'he methods are too complicated to desctibe here in detail.

~ For some angles, the exact value of the'sine is known. For
example, sin 30° is exactly §, and(this appears as the first
entry, -50000, in the above table., ¥or most angles there is
no exact formula, but there are approvimmgte.fomylEygand
these are used to fit in the valies of the sines of such angles,

Similar tables are published giving the values of the
tangents of angles. It is §ich a table that would be used in the
problem of the crag référred to above, since cot § = 1/tan 0,
so that the cotangegx an easily be deduced from the tangent,
We also often reQuire the values of cosines, but these can be
deduced from, altablie of sines, since the cosine of an angle is
equal to the-gine of go° minus the angle. The reader should be
able to venfy this without difficulty from a figure.

The addition formule.

ANwill record here, without attempting to prove them,
some formule which play a very important part in trigono-
metry, Suppose that we have any two angles, which we may
denote by 4 and B. Then the sine or cosine of 4 4- B can
be expressed in terms of the sines and cosines of the separate
angles 4 and B, The formulz are

sin {4 + B) = sin 4 cos B + cos 4 sin B,

cos (A 4 B) = cos 4 cos B —sin A sin B.

£

an
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These are called the addition formule for the sine and cosine.
Proofs of them are to be found in every book on trigonometry.

As a particular case we might take the two angles equal,
say B = A. The formul in this case reduce to

sin 24 = 2 sin A4 cos 4,
and .
cos 24 = cos?A — sin?A.

N
We can thus find the sine or cosine of twice an angle,\'if"x\ve
know the sine or cosine of the angle. A more interesting step
is usually in the other direction. In view of the\relation
sin?4 -- costd = 1, the formula for cos 24 can lé‘e written in
the form cos 24 =2 cos? 4 — 1, or in thedorm cos 24 =
I — 2 sin?A. These formulz enable us to findHe sine or cosine
of half an angle from the cosine of theyarigle. For example

from cos 45° = 1/4/2 we deduce th,at’:}m 223" == ,\/’é L
Demoivre's theorem. N

"There o fdmpigibbleycotmiction between the formule of
trigonometry and the formmle in the theory of the complex
numbers considered igthe last chapter. The original result
in this order of ideds)is called after its discoverer Abraham
de Moivre or Démoivre (1667-1754), a mathematician of
French birth who lived in London, It is:

Aeb€ 6 4 4 sin 0)* = cos #8 + ¢ sin 76,
where_iis“the “square root of minus one”. It is not difficult
to deriye this from the addition formule, at any rate when #
is a\positive integer. For example, when # is 2, the left-hand

.. side is
NAcos 6 + £ sin 0) X (cos O + ¢ sin §) =
cos? B 4-2 7 sin 6 cos & - ( sin 6)%
According to the rule for interpreting #%, this is equal to
cos? 0 — sin% 6 + 2 ¢ sin 0 cos §,

and, by the above formulee for the sine and cosine of twice an
angle, this is cos 28 - 7 sin 20, which is Demoivre’s theorem.
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Spherical trigonomelry. _

There is another sort of trigonometry in which we measure
triangles, not in a plane, but on the surface of a sphere. On a
sphere there are of course no straight lines, and the simplest
curves on a sphere are circles. Any plane intersects the sphere
in a circle, and a plane through the centre of the sphere inter-,
sects the sphere in the greatest possible circle. Such a cir¢le
is called a great circle, and great circles play the same gpart
on a sphere as straight lines do on a plane. The ealth*is
roughly spherical; on the earth, the equator and the meridians
are cxamples of great circles. The situation on a sphere is of
course not quite the same as on a plane, becaus¢ two great
circles intersect in two points (e.g., two meridians intersect at
the north pole and also at the south pole}, whereas two straight
lines intersect in at most one point. Stillpitds usually possible
to concentrate our attention on one of these intersections.

A spherical triangle is 2 figure™ow’ a sphere bounded by
arcs of three great circles. A spherical triangle has three sides
and three angles, just as a pldane’ triangle has; but the sides
are measured, not by their :leﬁgthsm)g}{i(ﬁigr}%ﬁbgg]g‘)lﬁgrWllrllich
they subtend at the centse” of the sphere. Do m spﬁencal
trigonometry the angled are angles, and the sides are angles
too. If we wish to sutvey the surface of the earth, taking into
account its curvatles) it is spherical trigonometry which we
have to use. The,problems of spherical trigonometry, solution
of triangles.afidso forth, are similar to those of plane trigono-
metry, but Qaturally the formule are more complicated. I will
quote only’one of them. Suppose that we have a spherical
trianglepvhose angles are 4, B, and C, and whose sides are

- a, band ¢ (i.e. the side opposite to the angle 4 subtends an

N

gx:gglé a at the centre of the sphere). Then

3

sin A sinB _sin C
sin a sin & sin ¢

This is an elegant formula, which obviously has some con-
nection with the corresponding formula of plane trigonometry.



CHAPTER XII
FUNCTIONS

I X ordinary life we are familiar with many things, the meagare
of which depends on some other thing, which can glse be
measured. The temperature at noon depends on the ‘seéason
of the year. The temperature at a particular placg dcpends
on the time of day as well as on the season. ;Ifie position
of the hands of the clock depends on the timie 'of day. The
atmospheric pressure indicated by the barométer depends on
the height above sea-level. The force exerted by the sun on
a planet depends on the distance betdeen the sun and the
planet. The income-tax which IXpay depends upon my
income. R

In all such cases, that which~depends is called a function
of that on whichibvaddends ethdntemperature is a function of
the season, and so on. Seientists are most intercsted in
functions which can beheasured with some accuracy, and so
can be represented by ‘numbers and formule. In mathematics,
our interests are Midinly in the numbers and formule them-
selves, We are interested in functions, but they are idealized
functions, in, %hich the rules of dependence are those which
we make up, burselves. Of course we do this in many cases
according £’ suggestions offcred to us by Nature.

Tuming back over the pages of this book, the reader will
find several examples of such functions. The area of a circle
ig~a function of the radius. If the radius is 7, and the area

47 then 4 = w?. Also the length of the circumference 1s a
function of the radius; if it is I, then L = 2=r. In trigonometry
there are several interesting functions, If 6 is the circular
measure of an angle, the sine, cosine, tangent etc., of the
angle, are functions of §. They are denoted by the formule
sin 6, cos 8§, tan 6.

Most of the functions of real life are too erratic, and
-depend on too many unknown factors, to be comparable with

IT4
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mathematical functions, or, as we say, to be reduced to a
formula. There is no formula for the noon-day temperature.
T'here is a formula for the angle turned through by the minute
hand of the clock. It is 8 = 6¢, where 6 is measured in degrees,
t is the time in minutes, and O is measured from its position
at the zero-hour from which the time is measured. This
formula, however, really applies only to an ideal clock, with
which the cbserved clock is roughly comparable. A

The income-tax payable on a given income is determingdby
an exact formula. In this case the formula is fixed first\by act
of parliament, and the physical reality follows the férmula. It
can do so exactly, because it applies to finite set§’ef discrete
objects (sums of money), the amount of whiel\is an integer,
and so not subject to fractional errors,

In the theory of functions, the numbet\which depends on
another js called the dependent variable, and that on which it
depends is called the independent vagiable. The word variable
is used because of the suggestion ‘of such examples as the
hands of a clock, which vary asitime goes on. We need not
necessarily think in this way JFor exampesotibeay jugtithink
of all possible radii of cictles, and of each radius having
attached to it another nimber, the area of the corresponding
circle. But it is more exciting to think of the radius as starting
from nothing and¢drowing steadily larger. The circle then
expands steadilyas the radius grows, and its area grows too.
The radjus js/then thought of as the independent variable,
and the area(hs the dependent variable.

The wotd variable suggests its opposite, a constant. This
is used\iw slightly different ways. We call = a constant, or
somefimes an absolute constant. Its value is determined once
ancéffbr all by the primary assumptions of mathematics. Other

~chpstants depend on comparatively local circumstances. In
\sbme cases, a variable can be a constant, if it just happens
not to vary. Consider for example the income-tax Ly, payable
on an income of £x per annum. In accordance with the general
scheme, we call « the independent variable, and the tax y the
dependent variable. But actually the tax is o over a certam
range of small values of x. Its value is thus constant over
this range, A function can of course be a constant for all
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values of the independent variable; thus the ratio of the

circumference of a circle to the radius is constant for all values
of the radius.

Functions defined by formule.

In mathematics a function is usually defined by means of £\
formula, We have already had some examples of this, and it {%
clear that we can construct any number of others. For example,
if y=oax 41, or p=a%-a2x+3 or y=ut -;~a;’3 - 1,
then y is a function of x. To every value of x cogregponds 2
value of y, which can be calculated from thgfgrmula, In
other cases, such as y = +/(x — 1), y is_delinéd only for
certain values of x, in this case for x > 1Nt is, if we are
thinking only of “real” numbers); for i(\w <2 1, there is no
“real’” square root of ¥ — 1.

The usual notation for a functiog¥n such cases is y = f(x).
The “f” stands for “function”. QneJean think of the f{) as a
machine into which the value of %48 to be fed, and from which
will then emerge the correspnding value of y. We can also
write f(x) 2evgdbraulfbeyred®ip 2 | g ete,, if we wish to
say which particular fupction we are considering. Naturally,
any other letter couldbe used equally well instead of f. The
Greek ¢ is used aluiost as much—y = ¢ (x).

Sometimes more than one formula is used to define a
function. We agight say for example “let y = x if o< ¥ < 1,
and let y =2¢%if & > 17, These rules can be thought of as
defining a)gihgle function y = f(x), though the formulz are
differe%}h different intervals. Such functions are familiar to
taxpa¥Vets, since the formula which determines the tax is
different for different ranges of income.

(O In very simple cases it is possible to define the function
imerely by specifying its value in certain intervals. We might
say, for example “let y == 1 for o cw . 1; let y =2 if
1 <<x< 2, and let y = 3 if v > 27, Here x does not appear
in the formule, but only in the rules about the ranges to
which they are to apply. Such a function is constant throughopt
an interval, and then steps up {or down} to another value 10
another interval, It is often called a step-function. A step-
function has recently been proposed as the rule by which a
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man whose income is x shall contribute to the university
education of his children. Naturally the steps go up in this
case, but the result would be that a father with an income just
above a “‘step” would be in a worse position financially than
one with an income just below it. It is strange that the wise
men who make our laws are unable to think of functions which
vary in more subtle ways than step-functions.

N
N

Functions represented by graphs. ()
Perhaps the most familiar example of a graph in ordinary
life is the temperature chart of a patient in a fever. Afjcertain
times of the day the nurse takes your temperature; The time
at which it is taken, say ¢, is represented by £ upits of measure
along the chart from the left-hand side. "Theseis a line across
the chart representing the normal temperature. If the temper-
ature of the patient s, say, 2 degrees ave normal, this fact
is represented by a dot on the chaft)two units above the
“normal” line. If the temperature {of the patient were sub-
normal, say by 1 degree, this would be represented by 2 dot
one unit of distance below thewormal lWgaulibrary org.in

As time goes on, a succeséion of dots is thus madé on the
chart, They are usually jeined up rather roughly by lines, to
suggest what must hage“happened in between the times at
which the temperqtis ¢’ was taken.

A diagram of‘fms kind, in which the relation between an
independent vatiable {the time f in the above case) and 2
dependent varjable which is a function of it (the temperature
in the abo¥e tase) is called a graph. It does indeed represent
graphis%ilfy‘ the behaviour of the function. _

Adsimilar diagram can be used to represent the functions
defined by mathematical formule. To take a very simple case,
~guppose that y is defined as a function of # by the formula
N\ = » + 1. Take a piece of paper, and draw on it two lines at
right-angles, one across and the other up-and-down the paper;
or preferably use a piece of squared papcr, on which this 1s
already printed. Start with some value of », say & = I; the
corresponding value of y is y = 2. This is shown on the
graph by making a dot one Unit to the right of the up-and-
down line, and two units above the across line. Next let x = 2;
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Pl then y == 3, which fixes the
next dot. Then & — 3 gives
¥ = 4, which fixes the next
one and so on. It is easily
seen that all these dots lie

) in a straight line, and this.

straight line is the graph of

the function y = x + N

The reader should draw in a similar way the graphs efether
simple functions, such as ¥ = 2 —x, or ¥ = &? — 5

What we are doing here is simply the conyérsé of the
process used in Chapter V. There we wishéd to bring
geometrical straight lines and curves within thé $cope of calcu-
lation, and we did this by labelling points by\phirs of numbers,
and finding relations between these numb&s, which we called
the equations of the straight lines grlcilitves. Here we start
with the equations, and get a pictofidlrepresentation of them
by representing the number-pairs, 88 dots on paper, and the
equations as curves drawn on,_the' paper.

It is pessibldbteuliteergiondin to get rough solutions of
algebraic equations, Suppose, for example, that in the same
diagram as has been used to draw the graph of y — x + 1, we
also draw the graph@f'y = x%. I'o do this at all accurately
points much closetcfogether than x = 1, 2, . . , must be used.
Some idea of theshape of the graph may be obtained by plotting
the points carrgsponding to & = -1, -2,.... T'he curve corres-
ponding to {¢his equation is a parabola whose appearance is
roughly that of the curved line in the following diagram.
It will Be-seen that the straight line inter-
sec’g&.ﬂﬁ parabola in two points. At each of
these" points y is equal to x + 1, and it is

¢dls6 equal to x% Consequently % = x - 1 /

for the two values of x corresponding to /
these points, If the graph has been drawn / Py
very accurately, the approximate values of e

% can be found by measurement from the

graph. The values found by solving the equations by
theoretical methods are x — 3 + 44/5 and x = } ~ 3V
Since v§ = 2236 approximately, these are approximately
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equal to 1618 and — -618. It would however need a very
large scale and accurate drawing to get such a good
approximation from the graph. In C. Smith’s Algebra, a
well-known mathematical text-book of the last age, I find the
remark “Graphical methods are, however, after all only
methods of getting rough approximations by those who know
no Algebra”. This seems rather severe, as there are manw,
equations which it is beyond the power of algebra to solve

exactly. ¢\
"N
Contimious functions. A\

A funetion such as a step-function which jumps suddenly
from one value to another is said to be disCentinuous. For
example, the function equal to 1 for ¥.<71; and to 2 for a>>1,
is discontinuous at x = 1. A continuous-furiction is, roughly,
one which does not do this sort of thitg. For example the
function equal to & for # <1, and 0 ~a§?s\for £>>1, Is continuous
at x = 1, in spite of the change efformula, because the two
pieces join up at this point. &

One thinks of the graph.gfia cg{%@gﬁgsﬁ%n_ction as a line
which can be drawn on paper without ki ing tp thé Pencil.
"This gives some idea ofthe situation, if we remember that we
must not join up thelsteps at discontinuities by lines parallel
to the y-axis. Sughi aline would not represent anything in the
nature of the fanction, which can only have one value for each
value of x. N .

The offictal definition of continuity is that a function is
continuofis'if its value at any point is the limit of its values
as th({gfﬁdependent variable approaches this peint. It is not
very_ obvious how. to apply this, but it does give the right

sorpof effect; for example, it ensures that a continuous function
P\ cannot pass from one value to another without passing through

) all intervening values. It might be thought that this property

could be taken as the definition, but it turns out that it would

not be at all satisfactory.

Periodic functions.
In the chapter on trigonometry W
of the function y = sin &, where & I

¢ considered the values
¢presents an angle not
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greater than a right angle; measured in radians, ¥ lies between
o and }=. As x increases steadily from o to 4, sin & increases
steadily from o to 1. This is easily scen from a figure, in which
a point P travels round a circle of radius 1, with centre O, say.

If P starts from the position 4, POA
8 . is the angle of circular measure =z,

and PN is perpendicular to O4, theq

sin x is equal to PN. When P is\at
c B, x = }mw and sin x = BO = s\ -
KO

MoJA Now supposc that P travelsorrround
the circie beyond B. The ydlus of PN,

1.e., of sin x, decreases ag%{in’, and when

S P is at ' it vanisheg. Ve’ express this
- by means of the fosmula sin = = 0.

Now let P go still farther round, ’L*r'eg}ﬂnd C. It is now
helow the line AC, and PN is in the gppotite direction to what
it was before. It is natural to attachnthe negative sign to it in
this case. The result is that, if x lieg“between = and 2w, sin x

e

is negative.W\Y\\f’ﬂh&gﬁﬁjbi?ar%f; o ) K= gn, and consequently
sin %E —~ —1. When P gets tound to A again, » is 2, and so
sin 2w = o, O
Beyond this, the'situation simply repeats itself. As x goes
from 2w up to Jq, P passes round the circle once more,
and sin x goe§through the same cycle of values as it did
when x wedt)from o to 27 Similarly when x goes from
47 to 6m,and in fact the same thing goes on repeating itself
indefinttely.
%&?fhnction with this property is called a periodic function.
Theiinterval through which x has to pass in order that the
~fonction y shall pass through its whole cycle of values is
eatled the period. Thus sin x has the period 2x. 'This is
expressed by means of the formula sin (x - 2m) = sin &,
which is true for all values of x. We can of course give #
negative values, corresponding in the figure to P passing round
the circle from 4 in the oppasite direction. '
The reader should sketch a rough graph of the functign
¥ = sin x, It is a continuous curve, starting from the origin
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of co-ordinates and oscillating endlessly between the values
1 and — 1.

All the functions of trigonometry also have similar periodic
properties. The graph of the function y = cos x, for example,
is quite similar to that of sin x. In fact it can be looked on
as the same curve, moved along through a distance 37 in the
direction of the axis of x. This is expressed by means of the ¢
formula sin (¢ + {r) = cos x. ' .

The function tan x is also periodic, its period being egual
to =; but its graph has quite a different appearance, sifiee it
goes off to infinity as x approaches the value 3%, ,and then
reappears from infinity in the opposite directiong,

‘I'he property of periodicity is of importaneé\in many of
the applications of mathematics. Many of \the functions of
physics are at any rate roughly periodic;\éyerything which
has a daily variation, for example, is persotic, with a period
of z4 hours. In the representation of\§iich variables, periodic
functions are obviously required. (O

*
<N

Tables. AN ) www . dbraulj - i
Ancther way in whichta function caralUI l:érali'gp%%éﬁtcd
approximately is by meaps of a table. A table is a list of the
values which the funckion takes for certain values of the
independent variable, \Suppose for example that we wish to
tabulate a function » = f{x) for values of x between O and 1.
We have to begit\Dy selecting values of x which are sufficiently
close togethep6/give a good idea of how the function behaves.
We might dot’example take & == 0T, 02, . .. 99, T. The table
would «thén contain 100 entries. Whether this would be
sufficiént would depend entirely on the purpose for which
the ‘table was required, and on the nature of the function to
b€ tabulated. A rapidly varying function would require more
ehiries in the table than a slowly varying one, to give the
same degree of accuracy.

Having selected the values of », we should have to calcqlate
the corresponding values of y, to 2 certain number of decimal
places; and these values are the entries which appear in the
table. Here again we should have to decide from practical
considerations how many decimal places to use. The more we
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use, the more accurate the table will be, but the more space it
will occupy, and the greater will be the labour of calculating it.

An example of a table has been given on page 110. This
is an extract from a table of the function y = sin x. The
whole table goes up to # = go°, and each degree is divided
into six equal parts, so that there are 540 entries in the tables,

At each value of x, y is calculated to five decimal placés:
In this case, y is a steadily increasing function of x; thaihs,
as we pass along the table from any value of % to thie' riext
greater value, the corresponding value of y also increases. But
in other cases y might decrease, or it might somefithes increase
and sometimes decrease, S

In a sense, a table does the same thing ds'agraph; it gives
an approximate representation of a function\dy giving approxi-
mations to its values at certain points. BGt4 table can be made
very much more accurate than anygriph.

I happen to have here Milne—Thomson’s Standard Table
of Square Roots, As an example,[et us use it to solve approxi-
mately the same equation ag\ before, 4% = & + 1, without
working ont, ifs theqrgtical,sglitipn. This equation is equivalent
o x=+/(x41),0r, ifWeput x +1=1¢ to t —1 = 4/1;
that is, we have to fidhd number whose square root is one
less than the number(itself. Looking down the table, T find the
following entries (Fhiave adjusted the decimal point as required

here) ke
G 2\t
2017 1-0177144
N\Y 2618 1-6180235
\§ 2-619 1-6183325

The number we want is clearly ¢ = 2-618, corresponding to
{ %"= 1-618. It is here that the graphs of ¢ — 1 and 4/ would
- Veross, if we drew them as accurately as the tables would allow.
The table shows, of course, that this is not an exact solution,
but it is the nearest that can be got from the table. The last
three or four decimal places to which /¢ is calculated are
of no use for this purpose.
The uses of tables in trigonometry have already been
described.
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Functions of several variables.

1n each of the above cxamples of functions there was just one
independent variable, x, { or whatever it might be, on which
the function depended. But a function may depend on two,
three, or indeed any number of independent variables. There
are many examples in physics of such functions. The force .
exerted by two gravitating bodies on each other is 2 function
of the masses of the bodies as well as of the distance bety¢en
them, The formula which expresses this dependence is mnar,
where 2 and ' are the masses, 7 is the distance and g'is 2
constant. To take an example from trigonometry, thé\cosine of
any angle of a triangle is a function of the three sides of the
triangle. The formula which expresses theldépendence of
cos A on a, b, and ¢ was given in Chapter gl‘

The general notation for a functiop/el”two variables x
and v is f{x, 3), and similar expressions\are used in the case
of more variables. )

We cannot draw on paper thegraph of a function of two
variables. This would require @ surface in three dimensions,
not just a curve. If the function isws w=diEaplbang & and
2 are thought of as the Co-ordinates of a point in three-
dimensional space, then(the equation will represent a surface.
Models of such surfaes are sometimes made with plaster or
with string, but so fap as T know these are not of any practical

use. £
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THE DIFFERENTIAL CALCULUS \
THE speed of a moving body may be measured Ay the
number of miles per hour, or of feet per sccond, which it
goes. In any units the speed is the number of unit of distance
traverscd during the motion, divided by the nufdber of units
of time taken. Now this is all right as long as\he'body is going
steadily along, so that its motion does notWary from instant
to instant. But if the motion is itselfnehanging, the total
distance divided by the total time will fiot give any idea of
what is happening at any particular iristant. It will only give
a sort of average speed over the whole motion.

To express this in formul®ysuppose that, at a time ?, a
moving bedy Hhvepdiflsed oféfRtance x from some starting-
point. Suppose that, at a latet time #', it has reached a distance

’

#. Then “distance Qi’ifided by time” gives the formula
;:, E"’: If the moHon'is steady, this can be called the speed

or velocity of the body. If not, it is only an average velocity,

and it gives dlo idea of what the actual velocity will be at

ary particlar instant (say at the time #), or indeed whether
- such a yelocCity at an instant can be defined at all.

Ifafast car went by you, and you could take the time at
which this occurred, and the time at which it reached a point
hilf a mile up the road, then, on dividing distance by time,

{"\you would get a number, which you might think had some
relation to the speed with which it passed you. It might be
better to time it over a quarter of a mile, provided that the
timing was aceurate enough. To time it over a few yards would
probably be useless, as the slight vagueriess inherent in the
timing would make the result very inaccurate. To time it over
an inch or so would be obviously futile. The same sort of thing
is true of any observation of physical quantities. But, for a

124
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mathematical function defined by a formula, this difficulty
does not occut.

Suppose we think of a body falling under gravity; and
then not really of the falling body, but of the mathematical
model by.which we represent it to ourselves. In the model,
let x be the distance through which it falls from rest in time ,
t. Then the formula connecting x with ¢ is x = $g¢?, where
is a constant (the constant of gravitation). We then want*to
find the velocity of the “body” at a given instant . e\

Let us time it over an interval beginning at this\instant.
Let us call the time at the end of this interval ¢ 45 so0 that
7 units of time have elapsed during the intgryal At the
beginning of the interval the body has fallen)d distance g%
and at the end a distance 1g(t -+ A)°. Duridg the interval it
therefore goes a distance 07\

Bg(t + B — Y
Lo(t + A2 = 3g(e? + 2that 1%
= 1gt? +.th'+ fght
The distance traversed is theréfére gmw{dglgéﬁlibf’h:yfbﬁ'gmncc
divided by time” rule thus'giVes gt + $gh. This may be called
the average velocity ovef, the whole interval. ]

The expression 9t i s gh which we have thus found consists
of two parts. Thextern g depends only on the instant Z at
which we start the measurement, and on the constant g, but
not on the length of time 2 over which the motion takes place.
"The second(térm, 1gh, does depend on /; but it is clear that
the smallet’% is, the smaller this term will be. Suppose the
experiihent performed successively with smaller and smaller
valuesof &, say for example that each is half of the one before.
Then this term also decreases indefinitely, or, as we say,

/“tends to zero. The whole expression then approximates as

closely as we like to the value gf. .

It is clear that this number gf has some special significance
in the problem. It is the limit of the average velocity over
the interval (¢, # -- ), when % is made indefinitely smail. It
seerns fair then to call it the velocity at the tune 1. This is the
definition of what we mean by ‘‘velocity at an instant” in this

particular case. Naturally “velocity at an instant” can be

but
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defined similarly in many other cases. It does not follow
that it exists in every conceivable case, but it does exist if
the motion is given by any of the simplest functions of
mathematics.

The differential calculus. A

The reader who has followed the abave argument about ths
velocity at an instant of the idealized falling body has(pet-
formed the first step in the differential calculus, This celebrated
branch of mathematics was invented independently by Newton
and Leibnitz in the r7th century. Their claimg{to) priority
were the subject of a famous controversy at the &ime, but we
need not attempt to judge the matter nowi( Fhe differential
calculus is such a necessary part of mathentatics that we may
suppose that sconer or later it woultl.h}\/‘e been discovered
by someone. Most other branches of mathematics now depend
on it in some way or other, Y

The differential calculus is primarily concerned with the
measurement of the rates of change of things which do change.
In mathenfifies e iR Whih change are fanctions of a
variable. In the above example, we determined the rate of
change of the functiopa = 3g¢2. :

We might ask th&‘same question about a still simpler
function, the fun‘cﬁ’oﬁ x = gt. The value of this at a later
time ¢ % is gt + 4). The change during this interval is

. therefore gh, @hd on dividing by % we obtain simply g. This
measures thedrate of change of the function gf. In this case,
as 1t happens, it does not matter what value of % we take,
and tl%\'résult 1s the same whether 4 is large or small.

Jhis operation of finding the rate of change of a given
fupetion is known as differentiation; we say in cases such as

(“those given above that we differentiate x with respect to Z
‘There are various notations by which this is expressed. Suppose
that the function concerned is denoted by x = f{t). Then the
rate of change at the instant # is denoted by f'(¥). In geperal
this also will depend on #, so that f( ) is just another function:}l
symbol, like f{}. Thus if f(t) = }g%, then f'(t) = gt, and_ i
f(?) = gt, then f'() = g. In the latter case, the sccond function
happens to be a constant.
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. . . . dx
Another rather peculiar notation consists of writing i

instead of f/(¢). This is to be read “dx by ar’. It is not a
fraction, and the reader should not attempt to take it to pieces
and attach a meaning to each separate piece. It just means
the same thing as f/(f). It has the advantage that it contains
in a kind of petrified form both the # and the #, and so reminds
us which is the independent variable, and which is the
dependent variable. The origin of such expressions is as follgwe,
Instead of writing ¢ and ¢ + / as values of the independent
variable at the ends of the interval considered, pegple’often
used to write £ and ¢ + 3f; here 3 is not a number tultiplying
£, but 3 as a whole means the same thing as %, Ituis the change
in ¢, The corresponding change in ¥ is then dénoted by 8
(in the first example which we considergdy Bx was equal to
gt + %gh). The average rate of change ovef-the interval is then

57 this being a fraction. The instarifaneous rate of change is

got from this by making &2 te;}d'ﬁfo zero. We write it as —,

. 8 www.dbraulibrary.org.i
but this is not a fraction, and«¢he du and 47 do not have separate
existences. AT

¥ . o
Such expressions haye' nothing to do with the fraction >

which we agreed in"Chapter IV to exclude from our scheme of
things. The idea £hat it has somehow crept back here would be
quite wrong\;:% is not “dx divided by df”, but merely a
cénven@i‘rﬁl notation for the limit of “Sx divided by 3¢

TE}C\ f(t) or j—: is called the differential coefficient of x

With respect to # or the derived function, or just the
erivative, 4 .

As another example of a differential coeflicient, consider
the function y = sin &° (measured in degrees), a table of
which is given on page 110. Let us sec what this table tells us
about the rate of change of the function at the value x = 30"
The cotresponding value of y is -5. Let us start by taking
another value of & not too near to the first, say for example

/
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x = 317, Comparing this with the first value, the change in
¥, or dx as we may call it, is 1 degree. The corresponding
change in y, which we call 3y, is the difference between the
entry in the table for x == 31°, and that for x = 30° and so
ts -01504. Hence
Sy
Sx )
. . " AT
If we take instead the next smaller value of x, & —,48790",
Le., x = 30f degrees, then 3x = §, and, from the \table, the

0150 '
- 54- = 01504, \
1 N

corresponding value of 8y is -o1245. Flence ™)
8y  -oragy . \\
Sx — ___:é_.___... = 01503. J
Similarly x = 30" 40’ gives 7 \d
% _ 01004 _)cos,
ax T L Naudl

o\

x = 30° 30’ gives RN
www.dbraulibrary onglin
" :

3y  .e0734
~ .'.J'I'
Y — SO — o1epf
dx 2 309
x = 30° 20 gives ,{‘3\
N 0¥ __ eo503
N o= —-F = 0150
PR 2 599,
A/ .
and x =,&bj’: 10" gives
Z"\.:' Sy Oz 2
./ a= -
’ = = —2% = w1512,
.s§ Sx -g; ?

~>3Running our eye down this set of values of 3v/3%, we see
\that they increase steadily as 8x decreases. This is some indica-
tion that they may be examples of a sequence which tends to
a limit as dx — o, though the table does ot allow us to follow

the sequence any farther. The value of the limit, i.e., of 3%

may be expected to be somewhere in the neighbourhood of
0151, _ : .
This is confirmed by theory; for it is known that, if
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. . . . dy
y = sin », when & is measured in radians, then Z: = CO5 X

At the value of x considered, sin & = 4, and so

B . /5 . g
COS X = /1 ~ giny = V1 1 =/ 3= % = I—;iz- = -866.
Now = radians correspond to 180°; consequently if the x-unit
is a degree instead of a radian, we shall have to divide by 180
and multiply bv = The valuc of % in these units will théres
"N\

fore be approximately 866 x 3-14 + 180, and thisy i~ just
about 0151, RS

It will be noticed that the values of 3y/8x imctéase fairly
steadily, but apparently with rather a jump a¥(the last stage.
This is due to the fact that here the denomidator is getting

rather small, Here we are dividing by\%\, ie., multiplying

by 6. Now the table is only “correet 2o five decimal places”,
so that there may be an error of anything up to -cocccs. On
multiplying by 6, such an errofi would turn into -00003, and
so the last decimal place in 8¥dx miy be dlatavd tinsycutgnt.
This difficulty is of course infierent in all numerical approxi-
mations to a differential coéfficient. The smaller 3x is, the more
accurately you have to@l%erve y in order to get a good approxi-

mation to =, N
©dx

In the difféfential calculus we often use the language of
variation ipytithe, rate of change, and so on, but the subject
has  no_ mneteéssary connection with time. The independent
variab\k%is often denoted by x, and the ‘dependent variable
by y\and (x, v) is thought of as a point in Cartesian geometry.
The* differential coefficient must then have a geometrical

{meaning. We shall next see what this is. .

The function ¥ = f{(x) corresponds to a curve 11 the plane,
and (x, y) is a point, P say, on the curve. Now change x into
& -+ 8, and let the corresponding value of y be y + 8y. The
point {x + 3x, v + Sy) is another point, { say,  little farther
along the curve, We can make a little triangle POR by drawing
PR parallel to the x-axis, and QR parallel to the y-axis, meeting

1
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/4 /
/,/";‘f,{, /*’
,,/P/I R /f
¢
AV N BV

O\
at R. The angle at R is a right-angle, and the lengthof PR
. . - - 2 N .
is dx, and that of QR is 8y. Now use the notatipnol trigo-
nometry: we have N\

% = tan P, ~”‘~.\\
Sx ¢

i.e., the tangent of the angle at P, Thi’éh\}ﬁglc is equal to the
angle which the chord PQ) makes with the axis of .

As we make 3x, and so also 3y)Smaller and smaller, the
point () slides along the curyejfowards P. To say that the

differenti‘é’lwgo%ﬁfé%ﬁ?%‘%ﬁé& at P is equivalent to Saying

that, as Q approaches By ‘t.l'lfo: chord PQ approaches a limiting

position, which will be simply that of the tangent (in §h3
geometrical sense {f}.t’he curve at . The geometrical meaning

of %ﬂ is then, titat it is the tangent (in the trigonometrical sense)

of the angleShich the tangent (in the geometrical sense) o .

the curv&at’ P makes with the axis of x.

& ¢an think of this as a measure of the steepness or

gradient of the curve at P. The gradient may be defined as
“amount of rise per unit of horizontal distance”, and this is

4y is.
dx .
An increasing function has a positive differential coefficient;
that is, the differential coefficient is positive at apy point i
the neighbourhood of which the functien is increasing
Similarly, a decreasing function has a negative differential
coefficient. As an example, consider the function y = x2 We
have learnt to differentiate this on page 125. The result 13

fust what
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Z% = 2x, which is negative if ¥ is negative, and positive if
is positive; this obviously corresponds to the fact that a2
decreases as & increases through negative values (e.g., it
decreases from 100 to o as x increases from — 10 to o), and
then increases again as x increases through positive values{\
If we mount a smooth rounded hill to the top, pausing”
there to take breath, we seem to be for the moment on{ level
ground. Here the gradient ccases to bé positive, and 23 we
go on it becomes negative again. In mathematica!‘language,

a . . e
(—2% changes from positive to negative at a maxigiam. If there
is a definite gradient just at the top, it must\be zero, so that

% = o. There is a similar state of aﬁa,irﬁlt the bottom of a
valley, where the gradient changes fforn negative to positive,
and vanishes just at the bottom. A geénéral test for the maximum
or minimum of functions is gherefore that the differential
cocfiicient must vanish at sfish pointsibdnliexample.iof a
minimum is given by the aove function y = x2 This clearly

has a minimum at x f\d, and in fact g = 2% = o there. As

£)

an example of a m{{qmum, consider the function y» = x — a%
Changing « intox 4, v is changed into & + & — (¢ + A)2 =
X + I —x* —a2%k — h2. Subtracting the original value of v,
we obtain Z“2x — A?, and, dividing by %, the result is
¥ —2x —%»This consists of the usual two parts, the 1 —2x
independent of %, and the remainder — 4 which tends to zero
as /i gends to zero. Consequently the differential coefficient
i8 d8%- 2x. This vanishes when x = . The corresponding
x4l of y is § — } == 2, and this is a maximum. It can be seen
\in various ways that it is the greatest value which y can have,

tor any value of x,

Higher differential coefficients. _ . )
if a function y = f{x) has a differential coefficient f'(x),

this itself will be a function of x. If it is the right sort of
function, it will itself have a differential coefficient; this is

denoted by f'(x); and so on, it being possible in some cases
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to go on forming differential coefficients indefinitely. In the
other notation, the first differential coefficient is denoted by

dy . dty : dy .
P the second by i the third by To and so forth; but the .
reader is recommended not to try to dissect these formule
into their component parts. As an example, if ¥ = &%, then™
dy . 4y _ &y _ ; oliofi

G T s ny T2 g = O, and naturally all the fo}l,ogmg

- - N
differential coeflicients are o. : \

The second differential coefficient has a fajtly’ simple
geometrical meaning, It is the gradient of tlle," gtadient, If
it is positive, then the gradient is increasingya situation such
as we experience just after passing a vallepbottom to mount
the opposite hill. Similar meanings cag’be given in other
cases. The meanings of the higher diffeténtial coeflicients are
naturally more complicated. 2NV

If we have a table of values of a function, we can tell
from it something about theedifferential coefficients of the
function. "@ondbeaulbim yoadiible of the function y = sin ¥
on page 1:0. This is amlincreasing function, so that the

gradient or first differential coefficient %, will be positive in

this interval. Now\gonsider the successive differences between
the entries in¢the table. They are -0o232, -00231, '0025%,
-00230, 00256750230, 00249, . . . There is very little difference
between ghenh, but they definitely get less, so that the gradient
is decreasing, and the second differcntial coefficient 1s negative.
The mumber of decimal places used in the table 13 not enough
to tell us anything definite about the higher differential
coeflicients. :
™\ A constant may be regarded as a simple particular case of
a function. If y = 1, say, whatever & is, it may be conventent
to think of y as a function of x, but it is a function with only
one value. In the Cartesian diagram, such a function 1
represented by a straight line paraflel to the x-axis. The
gradient of such a line is zero. It is easily seen directly that
dy

if ¥ = ¢, a constant, then a0 for the change Sy in ¥
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:ponding {0 any change 3x in x is o, so that 8y/3v = o,

I . P aj}‘ b
and so its Hmit ), 18 also o.
i

Now a very important theorem of the differential caleulus
asserts that the converse of this is also true; if the differential
coefficient of a function is always o, then the function must,
be a constant. It may be thought that this is rather obvious]
A road whose gradient is always nil can never go eitht;r‘up
or down, and so must remain completely flat. This is cotution
sense, but it is not mathematics; and in mathematies the
guidance of common sense is not always quite &eliable. A
logical deduction from the data is something different from
such commonsense arguments. The proofNdsy'not difficult,
but it would be out of place here. We cahlonly assure the
rcader that in this case mathematics and-cbmmon sense reach
the same conclusion. L

'This theorem has some impojtant consequences. Many
mathematical problems take a fosmn which we know some-
thing about the differential coefheients of a function, and want
to find out what the functionitselfi¢ b Ebbrary eeehinique
has been worked out for solying problems of this kind. Let us
just see what we can say(about a simple example. Suppose that
there is a function y pf,{c, and all that we know about it is that
Zg =1 — 2% for Ml values of x. What is y? As it happens

we have just beeh dealing with a function with this property,

namely y,< % — &% Are there any other solutions of the
prob]eml{&es; if y =x —x2 + ¢, where ¢ is any constant,
then J0has the required properiy; and there are no other

solutions of any kind. For if there are two squtio:;s, y.and 2,
’,\FI}‘@ﬁ d—i (z —3) _—g —%= o, since %’; and d—i are b?th

equal to 1 —2x. Hence 2 — Yy is a constant, say . Taking

4 to be the function x -— x* which we started with, it follows

that & = x — x* + ¢, Thus all possible solutions are comprised

in this formula. . .

The solution of the problem contains a constant ¢ which
is not determined by anything which we have yet supposed to
be given. It is what we call an arbitrary constant; that is,
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we still have it at our disposal, and we can choose it so that
the solution fits in with onc more eondition, imposed, for
example, by the necessities of o physical problemn. Such a
condition usually takes the form of saying that, when x has
4 particular value (say for example x == 0), then y also is to
have a prescribed valie (say for example v —= 1). In the above.
case, this means that the equation ¥ = x —a® 4 ¢ is to be
satisfied if ¥ = o and ¥ = 1; and this plainly requires(thit
¢ = 1. The solution is then completely determingdasit”is
Y=x—a 4, G\
From the geometrical point of view, the sitadtion is new

(¢ :
as follows; the equation 5}1 — 1 —2¢ doesywot determine
X y

completely the curve in the Cartesian piaic which has this
property; but if we add that the curve fust pass through the
point {o, 1), then it is completely deteimined.

Differential equations. N .
The above problem is oneof the simplest cxamples which
can be gived dbFawlibeT BB 4 differential equation. A
differential equation s an é‘qﬁation connecting an independent
variable x with a depqndent variable v, but containing also
the differential coefiéiant of ¥ with respect to x, and possibly
alse the second differential coefficient, and even differential

t‘:foefﬁcients of (8till higher order. 'The above equation,
by o\

il — 2056 called a differential equation of the first

o | , dy
order, becalise it contains nothing worse than 7 As an

example'of a differential equation of the sccond order, we may
give' the equation fj—z + v = o. Constructing a relation
& ax

N between # and ¥ from which this could be obtained by differen-

. tiation is known as solving the differential equation. It would
be impossible to explain here how to solve the last squation
which we have written down; it must be sufficient to say th?t
it has the solutions y —sin x and y = cos x, where x is
expressed in radians.

In the case of a second-order differential equation, it is
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possible to find a solution, which not only passes through a
given point in the (x, y) plane, but passes through it in a
given direction. For example, we can find a solution of the
abave equation which passes through the point (o, 1), 2nd has
there the gradient 1. It is actually y = sin # -+ cos &, but I
must refer to books on differential equations for the method
of obtaining this result. O\
Such problems are of frequent occurrence in mechdnics,
that is in the study of the mathematical models by whieh we
represent to ourselves the motions of material badies. The
science of mechanics was developed by Galileo, Wewton and
others in the 16th and 17th centuries. In it, a bgdy is supposed
to be subject to certain forces, which affect itsidotion according
to certain laws. Expressed in the language’of mathematics,
these laws usually take the form of differential laws; that is,
they conneet the position, velocitydeeeleration, etc., of the
body at a particular instant. They\dp not primarily tell us the

whole motion, but merely the wifferential laws governing it.

It is“the motion as a whole which has tq be di duced from the
Q" questidn’ Stesdlving

differential law. In other words, 1t 18 a questio
differential equations, i#which the time is the independent
variable, and there arg wne or more dependent variables which
give the position fthe body.

Such, for exathplé, is the problem of the motion of a planet
round the sun(?Atcording to Newton’s theory of gravitation,
a planet is s{;;bject to a force of attraction towards the sun,
which is.ifversely proportional to the square of its distance
from thestn. This means that the x, ¥, or whatever they may
be which determine the position of the planet satisfy certamn
differéntial equations, with the time 2 2s independent variable.

"Ifthe planet is thought of as a particle which is shot off from
& given point in a given direction, its path will be dFtermlned
ever afterwards by the theory of differential equations. The
result is actually the famous law of Kepler, that the planet
will go on endlessly round an eltipse, of which the sun s a
focus.

Similar laws determine
falls from a tree, only in this
to an abrupt end by a collision

what takes place when an apple
case the motion is soon brought
between the apple and the earth.
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These theories gave rise at one time to the idea that, if we
could determine the position and motion of every particle in
the universe at any one instant, we could predict the motion
of the whole system afterwards to all eternity. Such ideas ignore
the difference between actual physical systems and the mathe- _
matical models which we make of them. There 15 no reason ta
identify the two things down to the last detail, which, in the
physical case, must presumably always remain unknsra/
Consequently the mathematical model should never bewtaken
too seriously, in its physical applications, N

Successive approximations. \
A very important idea in mathcematics is thatf the solution
of problems by means of successive approxitgations. The idea
is that we first find an approximate solutiom’ef a problem; then,
on the basis of this, we look for a still\pearer solution, or, as
we say, a second approximation; and’sb on, each time getting
a little nearer to the exact solutief This process takes many
different forms. An example oediits in the following problem.
Supposethatb sl B i function, v = f{x) say, which

has differential coefficients™Vof as many orders as may be
required. Suppose thatwe know its value for a particular
value of %, and also{ihe value of its differential coefficients
), f(x), ... fointhis value of x Can we find the value
of the function @hen x is replaced by a slightly greater value
% + &? WhasSslightly greater” means depends on the circum= -
stances of theproblem, but we shall see how it works out without
being tog“precise about this. )
I f(%) is a continuous function, naturally flx -+ %) 1
neagly‘equal to f(x) if % is small. This means that f{x) is a first

_approximation to flx + /). We may write this as

flo 0y =flxy +...
where the -+ . . . means that the equation is not exact, and that
to make it exact something more, not yet determined, would
have to be put in. .
To obtain a second approximation, we recall the definition
of a differential coefficient; it is that f'(x)} is the limit of

o & oner K e
(E——k—)k —f¥) as & tends to o, Consequently f(xj]% -y
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will be approximately equal to f'(x) wher % is small, and so
Stz - ) — flx) will be approximately equal to (). This is
just what we want; it shows that the next approximation is

Sl A7) = f(%) 4 Bf (%) +- .
where the 4 ... means again that there is still somethmg
lacking to exact equality.
A third approximation is not quite so easy to find, b\ut the
following considerations may suggest it. In the abovc farmula

we have gone in one jump from x to x + &, with sotie,sacrifice
of accuracy, It would be more accurate to fo{qw the curve

¥ = f{x) round by meanb of the intervening’ points x + - e
X —I— k (ﬁ where n is as lapge positive mteger

and to calculate appro;umately theN m}:cesswe changes in »:
We could do this by means of the*“second approximation”
already found. This gives in ﬂfe~ﬁrst place

“ www.dbraulibrary.org.in
flx *- =) f(*) *f(x)
then

f(’wl-%k\—ﬂx¢—)——f( +")+ .

fg:f?r”%f‘) S+ Dyt D+

until ‘ﬂn;ﬂy
f(x k) — (”_‘;zl_)k) - ::ff(x +£f,’._ n__l)_‘.lf) .

\ We can alsa apply the same rule to the function f'(x) instead
of f{x}. This gives

Flo +

'G!I%‘S"

) = f%) 4, f”(»‘*‘) +-

P+ 2y = ) I 4
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places by using the third approximation obtsined in the
previcus section, In doing so we should also have 10 use more
decimal places in the approximate values of w and cos '—(:
It may be asked what the above argument really proves

about the value of sin (E o

6 1080 N
strictly it proves nothing. It is all a question of the + {0
We have assumed that this represents a number which is.
negligibly small, but it still remains to prove thagwg‘is so,
This is a job for mathematicians, and it would @2k&tdo long to
explain here how it is done. ITowever, it can bt;m@nhe, and the
result obtained above can be justified withoybmitch difficulty.

Taylor's Theorem. 'xi\\:

¥t would be possible to continue, tlhie ‘process cutlined in
the above section so as to obtain stil\further approximations,
but the details would be rather complitated. A morc promising
line of investigation is to exapiine the general form of the
above formuleey attd-dol deesvshatiat suggests. Now in the terms
h f(x), 143" (x) which we“have added on to the right-hand
side, the power of /; goes{lyp by one each time. This suggests
strongly that the nex;me}m will be of the form C/h®, where €
is something whichl\does nct depend on /. The formula
suggested is thus\

flo + NSf() - B () + ) OB
It is then,\éﬁuestion of finding what C must be. Briefly the

method&@ftb differentiate repeatedly with respect to 4, keeping
x fixed, “The successive results of this are

AV f R =) + k) 30k .

). The answer is thdt

O ) fle +hy=Ff"(x) + 6Ch + ...
e+ =06C 4+, .. _
the 4+ ... at each stage indicating an expression containing

higher powers of 2. On putting = o, all the terms on the
right-hand side vanish except the first one in each case. The
first two equations reduce to identities, which merely confirm
what we have already learnt. The last one reduces to f*''(x) =6C.
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Hence C =} /*'(+), and the fourth approximation 1
flo By = fx) AP M) R
This suggests that we have got on to something which gocs
on indefinitely according to 2 fairly simple rule. The rule
becomes clear if we notice that the factors 2, 6, in they
denominator are cqual to the factorials 2!, 31 Tt is therefore
suggested that there is a {ovmalz which is not just an appioxi-
mation consisting of a finite number of terms, but an{ ipfimte
series whose sum is actually equal to the function mith which
we start. The formula will be e\

Lt = r 1 "‘1 o . "‘3 P ”"..: iy

oy =) b+ @@ e
! 3! !

the form of the general term on the 1‘ight;Q&ﬁd side being given

by the formula ';‘;—r‘f""”(x), where f*(@ymeans the »* differential

coefficient of f(x}. o\ o
i Tl_lis celebrated formula ig;jkﬁ'own as Taylot’s series, and
its existence is usually referred towas WTaplatihtheors i Brook
Taylor was an English mathématician (1685-1731). Ilgis name
has become inseparabl Nattached to the formula, but it is
coubtful whether he“Was actuaily the first to discover it, It
i said to have begn known by Jamcs Gregory (1638-1675).
It is onc of the ouriositics of mathematical history that it was
apparently gap discovered by Newton, though Newton knew
some par:'%@lar cases of it. The reader who has found the
f:')regoi;}g;a ctions rather sophisticated may take comfort from
the thlemght that even Newton never quite got this point of
VIEW: .
~On putting » == o in Taylor’s theorem, we obtain
¢ ‘\ 4 2 ’
\/ (k) = flo) + Bf'(0) + ggf”(OJ EARRRE
This is usually known as Maclaurin’s theorem. It -lse:;t
materially different from Taylor’s theorem, SWC%, ltt;,soi-erz{
to get back from Maclaurin’s theorem 0 Taylot s st?‘ikiﬂg
merely by a change of notation. There are lmtﬁ};rem, for
particular cases of this formula, The binonuia

example, is
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1*1'_(?1:—1)x2 L nn—1) (H‘_z)x“ |

1.2 ' .2.3 e
(here the x corresponds to the % in the previous formula).
"Then there are series which express sin x and cos x in powers

of x; they are

(1+x) =1 +nx |

. L
sin x:x—s! -+"'~i_~r—:_
- :). .|I" N
and 2 4 5 N
x X x N\
CO§ W ==y — Ao T, \
2l 4l 6!

Another simple serics, discovered by ('}regogyj;jis that for
the inverse tangent. Suppose that x is definedled a function
of y by the formula ¥ = tan 3. Then conversgly-y is a function
of x, and the relationship is ecxpressed by the notation
y = tan—x. This function has the ex}éansion

tan "y = x — ¥ + LNV e
3 W5 7
and this isw(egbryidimenigsondie formula for = known as
Gregory’s formula is the pafffeular case of this obtained by
taking » = 1, tan"*1 (the “angle whose tangent is 1) being

1 i <
4m radians. RA

O
The exponential function.

There are g ‘number of mathematical problems which
reduce to the guestion of finding a function which is equal to
its own differéntial coefficient, for all values of the variable;
in otherswerds, we want to find a function f{(x) such that
7 7?(36) for all values of x. We have not yet encountered
suchi\a tunction, and actually it is not to be found among the
_eletnientary functions such as x, x2, or a
\\; “"L'o make headway with this problem we shall use a methed

which is often effective in mathematics. Suppose that the
problem had been solved, and that we knew such a function.
Then 1t would have to have certain properties and to satisfy
certain formule. From amoeng these formule we can perhaps
point to one by which the function can actually be defined.
Our hypothesis that it exists is thus confirmed, and the whole
theory can then be fitted together on this basis.

%
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This is what we shall do with the present problem. Suppose
that 2 function f(¥) such that £ (x) = f(x) exists, and suppose
that it is the sort of function which can be expressed by means
of Taylor’s theorem. Now if f/(x} is equal to f{x), then f@),
the derivative of f'(x), is also the derivative of f(x), ic., It 18
F/{x), which is equal to f(x). Hence the second derivative is
equal to the original function; and simitarly it can be proved,
in turn that ail the derivatives are equal to the original function:
Thus the 'laylor’s sevies O\

A\

flo ) = 1) B + )+

.
&N
L 3

becomes in this case simply -~
. . , kg ¢*¢ )
o - By = J(8) F Rf) + o TR

or \
o+ 1 = sl 04 5P ).

In the Maclaurin form, in whichg'=® o, this becomes
S\

L
08 = ) (g3 i gptirgbran b
JTere f(o) does mot defénd on k. It is just a constant, and
there is nothing to, iga} what its value is, We can choose it
to be anything we like, and the simplest choice is to take 1t
to be 1. The formula then reduces to

PN/ P
AOFEy =1 F Rty

N\

Nov&yﬁ\éan be proved that the series on the right-hand side 18
com¥ergent, whatever value /7 may have. Consequently it has
Asdefinite “sum”. It is this “sum which is.taken to be the
\Wvalue of f(k). This is our definition. Also it can be ghown
without much difficulty that the function deﬁn.ed'm this way
does actually solve the original problem. This is merely 3
maiter of differentiating the above series term-by-term, an

On doing this it i8 found

using the formula %k“ = nh™t
The function which

that the series simply reproduces itself.
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has been defined in this way is known as (he exponential
function. Turning back to the Taylor formeula, this is now
secn to be equivalent to

I+ 4k + (-4 By

_ .

2!

& 1

; h
Z(I +.’.\1’ "f—g—* ':‘"...) bt (I “:_k +_2_! +"')'

This can be verificd by actual multiplication. The readetgan
at any rate do this for the terms which have actually\beén
written down. For the later terms, a certain amount gl algebra
is required, & 3

This formula has some interesting consequences. if we take

% and % both equal to 1, it becomes
2

T2 S = (b )
or, in the f{} notation, o\
Fz) ={ Ay

If we take = 2 and & = 1, it becomes

_é(S) = fi@) < f(1),
or, in viewof dhr Ot T8,
13,2 (AP, o
We can carry on withthis argument indefinitely. It is clear
O .
that the number =141+ _I_I+ Lo s of special
\ 2zl 3l
importance in the’theory, and a special notation is assigned to
it. It is the’eflebrated number e. Some of the properties of
this numbgrhave already been discussed. The result of the
above %’g‘u’inent can now be expressed by the formula
N fn) = ¢
where # is any positive integer.
NIt can be shown that this formula, proved here for integers,
s also true if 2 is replaced by a fraction, or even by an irrational

3

. . x?
number. Consequently the exponential function 1 - -- 2 +one

is usually denoted by ¢*. The formula derived from Taylor's
series can be written simply as

e = g e gh



CHAPTER X1V
THE INTEGRAL CALCULUS

The geuneral problem of area.
Tue problem of the area of a flat surface was solved in
Chapter IX in the case of a rectangle, a triangle, or a cirgle)y
We shall now consider whether our ideas about area cdnybe
extended to other regions, This is a problem of some-anterest
in itself, but it is also interesting as being one of the'simplest
examples of the subject known as the integral edlculus.
Suppose that T take a piece of squared paper, divided up
into little squares by the lines printed ontyI draw on this
any closed curve, or closed figure of any ko with 4 boundary
made up of straight lines or curves. Ifhis boundary does not
cross itsclf anywhere, it will be segri\that it divides the papet
into two parts, one inside and the! other outside the boundary.
The question is whether the region ipside the bo ndary has a
deﬁnite ares. " :’ WL raulibrary . org.in
In a general way, one/might take as an approximate value
of the area the numbep of little squares which lie entirely
inside the boundary# Fhere may be many squares along the
boundary which li%artly inside and partly outside it, but as
it is not clear how to count these, it is perhaps best to 1gnote
~ them, Pa\ _ .
If the Boundary was of a very complicated kind, or if the
figure drasvn was very long and thin, there might be a great
many{0f these squares partly inside and_partly outside the
region, The number of squares entirely inside would then not
~giv¢ a fair idea of the whole figure. We could however, 10
thought at any rate, divide the whole figure up again by a still
finer network of lines. For example, the side of each square
might be divided into ten equal patts, sC that each square

would be divided into a hundred smalier .quares. The number
of these smaller squares lying inside the original boundaryaglm
proportion to the total number on the page) would generaly
give a better idea of its area.

3 145
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Of course we are really thinking about a plane defined
theoretically by number-pairs {x, y), and the boundary of our
region is defined by one or more equations connccting & and
¥. It is not even obvicus that such a boundary does divide the
plane into two parts, an interior and an exterior. After much
thought mathematicians have decided that any ordinary kind
of boundary does divide up the planc in this way. The problem™
of the area of the interior can then be approached by the ghove
method. In thought, of course, there is no barricr 4o-the
fineness of the mesh that can be used. As we makel it finer
and finer we may hope to get better and better approximations -
to the area. 'The actual arca will be defined as the limit, if it
exists, of these approximations. o\

Let us see whether this method worksNt the case of 2
triangle. Take for example a triangle in’tle Cartesian (x, ¥}
plane with vertices at the points (0,43); (4, ©), and (o, b).
The sides of this triangle are the dingy = o, the line x =4,
and the line y = bx/a. These togethet make up the boundary of
a triangle of base a and heightlb.

wwrw.dbraulibrary.ory ' The reader will no doubt
M¥say, “But I know the area of
p this triangle; it is }3ab”. The
point however is that in mathe-
matics a figure does not have
an area, or any other property
of this kind, just by nature.
It has it according to certain
RS definitions which we make. In
the previbus section in which this was discussed, lab was
really ‘the définition of the area. Now we are trying to define
ar¢gbin a new way, and it is not quite obvious that the
~Jesult will be the same as before. It is highly desirable
that it should be, in the case of ordinary figures such as
a triangle. But therc might be very extraordinary figures,
which would have an area according to one definition but
not according to another.
_ To proceed, suppose that the (¥, y) plane is divided up
mte a network of small squares of side &, by the lines x = o,
ky 2h, 3k, ..., and the lines y =o, %, 2k, 3h,.... Each




O "The whole point of all this,
Japplies to all sorts of figures, an
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square is of area A2, and we have to count up how many of
them lie inside the triangle. It is not easy to do this exactly,
but we can do so sufficiently closely for our purpose. Suppose
that k is just 1/ of the base @, so that n columns of squares
have to be counted. The 7™ column lies between x = (m—1)k
and x = mh, so that its left-hand side intersects the side of the
triangle, whose equation is y = bx/a, where y = b(m — 1)h/aN
Allowing for the fact that this may not be an exact multiple
of %, we see that the number of squares in the column ‘ighat
most b(m — 1)/a, and at least b(m —-1)/a — 1. O

1f the upper estimate, b{m — 1)/a, of the number.of-squares
in the m® column were attained for every valughof m, the

e

total would be
b b g
a{l +2 +'." +(n-—1)} =a§(ﬂ—1)n

by the rule for summing an arithmeticdl progression. The total
area of these squares is P\%

b o 2 bse"j._"b 3 1

a%(n Vnh %an' k St w%-.f Mﬁf‘eaulib%gfy,orgﬂﬁ
since mh.— a. If we took'the lower estimate every time, we
should have to subtractan area nk? = ak. Whichever estimate
we take, the result ditfers from 1gb by a term containing a
factor &, which i Qle}efore very small when % is very small.
In other worda,%he limit of the area of the little squares
contained in-the triangle, when their side A tends to zero,
is 1ab. This'is therefore the area of the triangle according

to the rew  definition. Fortunately, it agrees with the area
according to the old definition.
&

The integral calculus.
of course, is that the method

d not merely to triangles. In
the details might be rather formidable,
luate sums much more complicated
Let us see whether the process

other cases, however,
as we might have to eva
than arithmetical progressions.
cannot be simplified.

In the first place,
ticular point in count

in the above example there is no par-
ing up the exact number of squares In
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the m™ column. We might just as well take instead the tallest
rectangle between the lines x = (m — 1)k and x = mh. The
height of this rectangle is 5(m — 1)4/a, and its area is therefore
b(m — 1)h*/a. It differs from the sum of the corresponding
squares by at most a part of one square. The sum of all these

terms is 4ab — 3bh as before, so that we obtain the same result

from this method as from the previous one. .

Now suppose that we wanted to find the area, not just{of,
an ordinary triangle, but of a triangle of which one sideywas
a curve defined by an equation of the form y = fa); for
example it might be y = &2 or y = 3, o\

The procedute“would be
| ) exactly the same. Divide up
| the range ofy'variation of %
into 2 largénumber of small
parts\by ‘the lines & = o, %,
2k, LI f(x) is steadily in-
creasing, the tallest rectangle
which can be fitted into the
figure between the lines x =

o ¥ {(m —1)h and x = mh is of
height f {(m — 1)k). Its @¥en is this muitiplied by %. The area
to be assigned to the whole region is therefore the limit of the
sum of all the termé\}‘{(m — 1)k} X A, when A is very small.
The smaller % is{ of course, the larger the number of terms
will be, but the smaller each individual term will be.

A special\‘ndtation has come into use for the limit of such
sums, We~think of the typical slice cut out of the area as
beginningat x, and ending at & + 3x, so that 3x corresponds
to the¥hof the above argument. (As in differential calculus, dx
hepe just means “a small addition to &”, not & times x). The

{typical term of the above sum is then Fflx)Sx. The sum of all
such terms is then denoted by Zf(x)Sx. The limiting value of
this sum when the number of terms becomes very large, and

the individual 8x very small, i¢ denoted by J f(%)dx. The 8

has turned into d, and the X into the old-fashioned long s.
This is a purely conventional expression, and it must not be
thought that it can be taken to pieces, and a separate meaning

*
setsaignidd bocaalilbcatc oLE
ohedl] SO0

NS

! *
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assigned to each piece. The whole thing is known as an integral,
and the science of such processes is called the integral calculus,

j‘ is always read as “integral”, and J. FA(x)dx as “‘the integral

of f{x) with respect to &”, or just as “integral flx)dx”. The
process of finding the value of an integral is called integration{™\
Actually, the expression is usually elaborated a little. In the
above example, x was supposed to vary between o andg.
These are called the limits of integration, or the lower"and
upper limits, and are put into the formula as) follows:

f(x)dx. In the case of the above triangle w@d{s’traight line
sides, the function f{x} is %, and the result bf-\0dr investigation

of the area of the triangle would be zn”b\ten as
B g = 1N
In most cases it is not easy\to evaluate integrals directly.

The only very easy case is that invwhithrshienfungtien i{x) 1s 3
constant, say C. Suppose-that x varies between the limits
and b. The typical terui‘of the sum Zf(x)3x is just Cdx. Here
Sx is the breadth of the ‘typical slice, and the sum of all these
breadths is b — k@ he value of the sum is therefore C(b —a),

and the integrahhds the same value. Thus
A dex = C(b — a).

T c"ez;'rc_spoﬁding geometrical problem is simply that of
finding the area of a rectangle of base & -
+These problems about areas are typical problems of the
. dnfégral calculus, but there are many others. What is the
ylength of a given curve? What is the volume of solid body of
given shape? What is the area of its curved s_urfaceg How far
will a body, moving with a given law of velocity, go in a given
time ? All such problems the integral calculus sets out to solve.
In Chapter IX we obtained the area of a circle, a_nd the
length of its circumference, by methods slightly different
from those of this chapter. The prevmus_methods were really
examples of integration t00; they depended on the same

b — a and height C.
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essential idea, that of finding the limit of a very large number
of very small terms. The only difference was that, in the
problem of the area of a circle, we divided up the figure into
a large number of little triangles instecad of little squares or
strips, because the triangles happened to fit into the circle in
a simpler way than squares would.

Differentiation of the integral. O\
So far, the differential calculus and the integral calodlus

have appeared to be quite independent subjects.mgé‘tually

there is a close connection between them. o\
Consider the formula for the area of a triangle with one

curved side ¥ = f{x), the base going from x='¢'to x = a. In

the notation of the integral calculus, ghis‘\farea is | flw)dr.
In forming the integral we supposed th{{tx\a was 2 fixed number;
but if you think of the same thing ‘béing done with different
values of a, the result will dependvon the value of a. In other
words, the iﬁfég?dif ?é‘lé.bfﬁfﬁéﬁb%;%f a. We might denote it by

F(a), so that =y
F(a)uz ¥ flx)dx,

Now the differential, é;}ai\c:ulus expert, on seeing a function,
naturally wants to*differentiate it. What is the differential
coefficient of F(a)%

The rule for differentiation is, change a into a + %, take
the differcnes.F(a + &) — F(a), divide by %, and procecd to
the limit/when /4 tends to zero. In this case Fla -+ &) — F(a)
is the atef between the curved boundary, the x-axis, and the
linesx"= @ and x = @ + k. If £ is very small, it will be seen,
omdrawing a reasonable figure, that this area is approximately

Y > k. The result of dividing by % and proceeding to the

limit is therefore simply f(a). Hence ; Fla) = f{a); that is, the
@

differential coefficient of the integral is the value, at the upper
limit of integration, of the function integrated. One can say
roughly that differentiation is the inverse process to integration.

Differentiation of the integral gets you back to the original
function. This is a very important discovery, because it is
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usually very much easier to do differentiation than integration.
In the differential calculus one can accumulate a large stock
of formule, giving the differential coefficients of all sorts of
functions, Suppose that this has been done, and that we wish

to evaluate the integral F(a) = | f(x)dx. We search among

our stock of formulz for a function whose differential coefficient
is equal to f{x) (I mean of course for all relevant values 9b).
Suppose that we find one, and that it is ¢(x);(that”is,
;; # (%) = f{x). Now we also know that d‘i F(x) = f{»). Conse-
quently c_f‘i ( Fla) — :ﬁ(x)) = fx) — fla) = Q,,jé’f:d hence (see

p. 133), F(x) — ¢ (x) must be a constant.\That is, there is 2
constant € such that f(x) = ¢ (%) -+ C forall values of . The
value of the constant C can usually bé found by giving »
some particular value, For examplevin the figure which we
have considered above, F(x) is\clearly o when x is o, and
consequently C is minus thg{value of ¢(x) when x = o, or
~ ¢ (0). The result could thea'be ‘Wiivelh e e dgrmng in

"Fx)dx = b (@) — ¢ (0)

All this can be ,ii}i}s,trated by investigating still once more
the problem of thé.area of a triangle. Suppose that the inclined
boundary of the triangle is the line y = kx. It is then a
question ofyfidding 2 function of which this is the d:ﬁere_ntug
coefficient, Even the very small stock of functions differentiate
in this bebk contains the answer to this; it is $kx* (see p. 125).

1t F{f}} = fr}exdx, it follows that F(a) differs from }ka* by

2or hat i independent of a. Since both (@)
. @constant, that is a number indep O, The result

Nand Lka? vanish when 2 = o, this constant
is therefore »
i-kxdx = }ka®.

This agrees with the result previouslbj; obtain
a triangle, as we see on putting & = 0/a. .

It rgnight happen that there was no function amo:zigt}(:;l;
stock which had the required differential coefficient, an

ed for the area."i of
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we should not be so fortunate. This would not mean that the
problem of integration was insoluble, but merely that its
solution was not of any form already known to us. We should
have to try to enlarge our knowledge of functions. Such
situations have led to many advances in mathematical science.

The integral calculus would not have been entirely strange’
to the mathematicians of antiquity. They invented ingenious
methods of caleulating certain areas and volumes, and; ‘their
methods might be regarded as a sort of integration{ But as
they did not know the differential calculus, they peser found
an easy and systematic way of evaluating intcgrals,

CC
Logarithms to the base e.

We have shown that, in mathematics w/iich is used for the
purpose of actual calculations, logaritkfgs to the base 10 are
always used. But there are many bpdiiches of mathematics in
which it is the structure of the subject, the way the formule
fit together, with which we argvptimarily concerned, ang n
which actual calculati if thev occur at all, are a secondary
consideraﬁgi'akl%gﬁixgﬁ%? S?ﬂgathematics the number e is
always used as the basesof logarithms. We shall now try 1o
explain why it is this fitvmber which is used,

One of the principal reasons is that, in the integral calculus,
many problems jlr%olve the integration of the function 1/%;
and the integralof this function is log.x. The number e arises
naturally, so\to’speak, when we take this point of view.

To prove’that the integral of 1/x is logx is equivalent
to. pro@g‘ that the differential coefficient of logx is 1/x; of,

if wé%rite ¥y = logx, we have to prove that % :_:.:_ Now

,J}ﬁﬁ relation y = log,x is equivalent to & = ¢’; we have shown

£

) ) , . . dx
in the previous chapter that this relation gives v ¢', or,

. . dx d 1 S s
what is th t = x Y _ 1 (this is a con~
18 the same thing, =" Now Jr = In (this

d

Y .
sequence of the relation gl = Si in which the symbols just
®  dx

37
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. d .
mean fractions); hence ;iz = i, the required result.
X

We can put this in a slightly different way. Consider the
problem of evaluating the integral J‘ i; , where a is any
1

number greater than 1. According to the general method of
the integral calculus, this integral will only differ by a constant ™
from any function ¢{a) whose differential coefficient is 1/d.

Such a function is log.a, and therefore 3
1a-dx "
-~ = log.a + C,
J1H p

where C'is a constant, i.e., is independent of .. Bt on putting
a = 1, the integral on the left-hand side begomies o, and log,1
is also o, Hence C is o, and the result is, iigiply

d_ log.a. \ -

1% < P\ 4 )
This formula, which is made up, ffom very simple elements,

again demonstrates the occurfeng%\gfdg ina %?Zyué%l%ﬂgn of

Some writers have taken“this formuld as
a logarithm. If this is, fnade the starting-point, the whole
theory is reversed, d ‘the exponential function appears as
the inverse of the, {ogarithmic function, but the final result

is the same as before. . ) E
We could, (of course, operate always with logarithms to

' the base 10.4f Ave insisted on doing so, but then most of our
formule woeuld involve a certain constant. This arises from

the fgrx:;mia logy o = POE

whgre x is any positive number, and p is 1/log.10, and is
__(equal to +43429 to five decimal places. For example, the above
\Tormula of the integral calculus would have to be written a3

rdx = I logy ¢a-
w1

X
OF course if we have obtained any formula involving logarithms
to the base ¢, and then have 10 evaluate 1t numerically by means

of ordinary log tables to base 10, we ¢4l do so at once by using
the same?om%ula. Suppose for example that 1t 18 required to
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3
evaluate the integral ; ij This is equal to log3, and

. X
to ilogm:;. From the t:;bles we find that log, 3 = 4771, &

dividing this by p the result is about 1-1.

I will conclude by giving two more examples of t
occurrence of fogarithms to the base ¢ in a natural way;
formule which have no primary connection with the lnteg
or differential calculus. \

The first example concerns the series 1 4 § + } 04 +.
We proved in Chapter VIII that this series is diyergent, 1.

that the partial sums 1 + 3% + 3 4+ ... = :; be{}j@'r'nc indefinit

large as n is increased. It is then naturakte ask if the sum ¢
be compared, as regards its rate of/@rowth as = tends
infinity, with any simple functien(“ef ». Does 1t behave
approximately the same way as n,{0r as #%, or as +/'n, or wha
The answer is that it behaves 4 @pproximately the same @

as logn., Theipelationais, wrjgian in symbols as
I+3 4+ T\ S —|—$~logen.

This is read as “the.xpression on the left-hand side is asym
totically equivaledt™fo logn”. Alt that it means is tt_lat 1
left-hand side,divided by the right-hand side (in this ¢
logn) tends, tb.the limit 1 as n tends to infinity. The pr
of this thedrém is too technical to be given here, though actu?
it is not/at”all difficult. _

Ke) expression “asymptotically” comes from geomet
An{asymptote (from Greek “not intersecting”) is 2 straif
line " towards which a curve approaches indefinitely close

(rithout ever actually meeting it. One of the simplest examp

\

} is the curve y = 1/x, which, as x tends to infinity, approact

the line ¥ = o in this way; (the reader should draw a figur
Thus we say that y = o is an asymptote of the curve y == T,

The prime-number theovem. ;

QOur second example deserves a head-line of its own, sif
it belongs to a very different kind of mathematics from !
previous one. We proved in Chapter II the famous theorem
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Euclid that there is an infinity of prime numbers; that is that,
however far we go along the numbers, there must always be
mote prime numbers beyond the point at which we have
arrived. This theorem remained practically all that was known
abont the distribution of prime numbers until quite modern
times. But then mathematicians began to ask more searching
questions about the problem. These enquiries took the form
of asking, about how many prime numbers are there ‘nnt
exceeding x, when x is large, say x is a thousand, or a iillion,
or a million million? A\

The number of prime numbers not exceeding/mis denoted
by the symbol n(x). This =( ), which no doubt.arose from the
initial letter of “prime”, has nothing to do with the constant
x, but is a functional symbol meaning what has just been
explained. For example, the prime anb}rs less than 1o are
2, 3, 5, and 7, so that n(10) = 4. Up(ty' 17, we have also the
primes, 11, 13 and 17, so that n{ry) =7, and so on. The.
question then is whether there is\an asymptotic formula for
7{x), as x tends to infinity, in. thﬁ(ﬁamﬁlﬁﬁn%ﬂﬁyth?;ﬂﬁ}fmpwm

formula for the sum 1 ;i-‘%f'n}- . +_:i which has just been

explained, Tt is not, dbvious that there is such a formula,
because the prime, fitmbers occur in a rather irregular way.
The problem was the subject of many researches during the
nineteenth cepgury, until at last in 1896 it was solved inde-
pendently by\two mathematicians, Hadamard in France and
de la Vallée-Poussin in Belgium. The result is

NS .

) () ~ logx’

~Jdel, when x is large, w(x) is approximatel
logarithm of x to the base e. } . h

This is the prime-number theorem. Again Ioga]flthm Y tle

base e occur in a problem which in the first place involyes only
the simplest elements of mathem&.ticsg the integers. It wo ue_
be quite impossible to give here any idea of how thfl P n:-n of
number theorem was proved. We can only say thafit c Pa‘;
involves the theory of functions in a very (:011:1})11.::30;1 Wa}(;ile p
that all attempts to prove it in an elementary way have )

yx divided by the
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CHAPTER XV
AFTERMATH

BERTRAND RuSSELL said that mathematics is the selefice
in which we do not know what we are talking aboutand do
not care whether what we say about it is true. Thi§ paradox
means in the first place that mathematicians areypeople who
put together patterns of certain kinds, The pattérns must be
made up of something, but the ordinary mathematician does
not usually concern himself about what tlte*something really
is. It may be different things in differerit)cases or to different
people, but whether it is so is a qu'\;gion for philosophers.
As mathematicians we do not knéw what it is that we are
talking about. As to not caring wihether what we say is true,
perhaps thiy’ sheanibihay ofigally” different kinds of primary
axioms could form the starting ‘points of mathematical systeme
The mathematicians would“only be concerned to follow out
their consequences, nt to enquire about the compurative
validity of different éets of axioms.

In this book We"have given elementary introductions to
various branche§ df mathematics, but no attempt at a complete
survey has been’ made. Algebra and geometry are to form the
subjects of further volumes of this series, so that very little
has been"said about them here. Dynamics and subjects of that
kind,usially known as applied mathematics, have only been
mentioned casually. The main subject which we have dealt

LWith is what mathematicians call analysis, This is a rather
yague expression for those parts of mathematics in which the
ideas of limit, variation, function, and so on, are uppermost.
The experts in these subjects sometimes describe themselves
as analysts, An analyst should be able to handle such things
as integrals and infinite series just as well as if they were the
simple expressions of elementary algebra. The expression
“+...."” is not uncommonly used in mathematical writings
to mean something which the writer proposes to ignore, in
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the hope that it does not really matter very much. Analysts
also use this expression, but they should know, each time
they use it, exactly what they mean by it.

Mathematics is 2 highly technical subject. If you take
down a book from a mathematician’s shelves and open it at
randem, it is very likely that on the first page which you read,
you will not be able to understand anything at all. Stll I hopel
that anyone who has read this book would feel that, even if\he
was reading a foreign language, it was not written Jnvan
unknown script. He might be able to form some ideda\of the
sort of thing that was going on, even if he could notidctually
follow the details of the working. At present eveh'a mathe-

| matician cannot usually follow the writings sofyether mathe-

maticians without a special study of their particular subjects.
The time when any one person could-know the whole of
mathematics is long past. The accumalated stock of mathe-
matical knowledge is very large, and\is still growing rapidly.
All that any mathematician can do~ow is to concentrate on
those topics which he finds specially interesgilﬁ.*jln this way it
is possible to reach the limits)of fowleliye dtb Rty Rarow
fronts, and to make progress‘there, while remawning compard-
tively ignorant of other{parts of the subject. )

Tt is impossible invabook of this kind to teach mathematical
technique. There%ig\iio short cut to this. Anyone who wants
to be able to solve mathematical problems must go through the
ordinary routifie: This is what mathematical text books are for.
There are. foany good ones at the present time. Much of the
fascination 'of mathematics lies in the scope it gives for the
use of edmplicated techniques. One has to take trouble to
learminid use them, but most people who have done so seem to

71 find that many people, even those working in other
‘branches of learning, do not know whether mathematics 15,
like science, active at the present day, or whether it 1 merely
a routine which has come down to us from tuneé immemo.

Actually, 1 suppose that more people are engaged in mathe-
matical research now than at any previous time. Some topics
become exhausted, of course; so far as I know, no one nuj;i
discovers anything new about trigonometry, for example.
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the same time new subjects open out before us, so that there
always seems to be plenty to do.

Progress has been continuous for several hundred years
now, and shows no signs of slackening. Probably, as long as
there are mathematicians, some of them will be finding out
something new about their subjects. ,

The question is sometimes asked, what have mathematicians
discovered in modern times which would have been completely
new and strange to the Grecks ? One of the best answers tO.This
is, the theory of functions of a complex variable. This is a
subject which we have not been able to touch gn Here, but
which has occupied a very large part of the timé”of mathe-
maticians during the last century and a half Btiefly, this is
what it is about. We have introduced here theddea of a function,
and the idea of a complex number. Natw'put the two ideas
together, We can define functions ig-which the independent
variable is not a “real number” but a {egmples number’ (x, 3), or
x -7y, in the sense of Chapter X, Such a number (x, y) or x +1y
is usually denomd simphe Py ganl hen in formulz such as x* ot
%% we can just replace the x byve and think instead about 2* or
23, In this way we arc led o consider functions of a complex
variable. The theary of\Such functions contains many very
remarkable theorems, Patticularly those due to the great 1'rench
mathematician Cauechy (1780—18357). Cauchy’s theory of
functions of a €omplex variable would have surprised the
Greeks verystich, and surely it would have delighted them
too. N .
Perhapé/the most surprising thing about mathematics 15

that ittis" so surprising. "The rules which we make up at the

beginning seem ordinary and inevitable, but it is impossible
tenforesee their consequences. These have only been found
{"aut by long study, extending over many centuries. Much of
our knowledge is due to a comparatively few great mathe-
maticians such as Newton, Euler, Gauss, Cauchy or Riemann;
few careers can have been more satisfying than theirs. They
have contributed something to human thought even more
lasting than great literature, since it is independent of language.
It is sometimes supposed that mathematicians have extra-
ordinarily remote and mysterious minds, or that they are
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people who can think quite easily about the inconceivable.
"This is not so. Some of the patterns which they make up are
extremely complicated, so that it almost passes the power of
the human mind to see whether they fit together correctly or
not. But essentially their patterns are of the same sort as the
simple ones of which we have given some examples here,
Mathematicians are often asked why they spend their lives

trying to solve such curious problems. What good is it to know
that every number is the sum of four squares? Why do\you
want to know about prime-pairs? What does it matter whether

7 is rational or irrational? N

A mathematician faced with these questions?ss in much
the same position as a composer of music beipg, questioned by
someone with no ear for music. Why do ydihselect some sets
of notes and have them repeated by niusicians, and reject
others as worthless? It is difficult to answer except to say that
there are harmonies in these thingsyfhich we find that we can
enjoy. It is true of course that somie mathematics is useful.
The invention of logarithms Was welcomed by astronomers
because it reduced the labour’of ht AR MY SRR & fReory
of differential equations endbles engineers to think about such
things as the flow of gvater in pipes. The theory of - linear
operators enables thepliysicist to think about the atom. But
the so-called puréfoathematicians do not do mathematics for
such reasons. Iicah be of no practical use to know that = is
irrational, hutyifAve can know, it would surely be intolerable
not to knofs Pure mathematicians do mathematics because
it gives.fem an msthetic satisfaction which they can share.
with other mathematicians. They do it because for them it is
fun;&n the same way perhaps that people climb mountains

fqrf Fun. It may be an extremely arduous and even fatal pursuit,
bt it is fun nevertheless. Mathematicians enjoy themselves

because they do sometimes get 1o the top of their mountains,
and anyhow trying to get up does seem to be worth while.

I once heard a lecture by a physicist in which he ’dended
what he thought were the futilities of pure mathematics; but
then he referred to some theorem of pure mathematics \-’Vth!l,
fifty years after its discovery, had lfound an application In
relativity, and this seemed to him little short of miraculous.
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But such cases are not uncommon, The ellipse was studied
for centuries before it was found to be the orbit of a planet.
To express astonishment at this is to mistake the nature of
mathematics, Mathematicians are engaged in discovering and
mapping out a real world. It is a world of thought, but it is of
a kind on the basis of which the physical world is, to a certain
extent, also constructed, _ N

A ¢
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